Condensates of atoms with spins can have vortices of several types; these are related to the symmetry group of the atoms ground state. We discuss how, when a condensate is placed in a small magnetic field that breaks the spin symmetry, these vortices may form bound states. Using symmetry classification of vortex-charge and rough estimates for vortex interactions, one can show that some configurations that are stable at zero temperature can decay at finite temperatures by crossing over energy barriers. Our focus is cyclic spin 2 condensates, which have tetrahedral symmetry.