Do you want to publish a course? Click here

Vortex Molecules in Spinor Condensates

241   0   0.0 ( 0 )
 Added by Ari Turner
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Condensates of atoms with spins can have vortices of several types; these are related to the symmetry group of the atoms ground state. We discuss how, when a condensate is placed in a small magnetic field that breaks the spin symmetry, these vortices may form bound states. Using symmetry classification of vortex-charge and rough estimates for vortex interactions, one can show that some configurations that are stable at zero temperature can decay at finite temperatures by crossing over energy barriers. Our focus is cyclic spin 2 condensates, which have tetrahedral symmetry.



rate research

Read More

Extended Gross-Pitaevskii equations for the rotating F=2 condensate in a harmonic trap are solved both numerically and variationally using trial functions for each component of the wave function. Axially-symmetric vortex solutions are analyzed and energies of polar and cyclic states are calculated. The equilibrium transitions between different phases with changing of the magnetization are studied. We show that at high magnetization the ground state of the system is determined by interaction in density channel, and at low magnetization spin interactions play a dominant role. Although there are five hyperfine states, all the particles are always condensed in one, two or three states. Two novel types of vortex structures are also discussed.
We observe interlaced square vortex lattices in rotating two-component dilute-gas Bose-Einstein condensates (BEC). After preparing a hexagonal vortex lattice in a single-component BEC in an internal state $|1>$ of $^{87}$Rb atoms, we coherently transfer a fraction of the superfluid to a different internal state $|2>$. The subsequent evolution of this pseudo-spin-1/2 superfluid towards a state of offset square lattices involves an intriguing interplay of phase-separation and -mixing dynamics, both macroscopically and on the length scale of the vortex cores, and a stage of vortex turbulence. Stability of the square lattice structure is confirmed via the application of shear perturbations, after which the structure relaxes back to the square configuration. We use an interference technique to show the spatial offset between the two vortex lattices. Vortex cores in either component are filled by fluid of the other component, such that the spin-1/2 order parameter forms a Skyrmion lattice.
Topological phase imprinting is a well-established technique for deterministic vortex creation in spinor Bose-Einstein condensates of alkali metal atoms. It was recently shown that counter-diabatic quantum control may accelerate vortex creation in comparison to the standard adiabatic protocol and suppress the atom loss due to nonadiabatic transitions. Here we apply this technique, assisted by an optical plug, for vortex pumping to theoretically show that sequential phase imprinting up to 20 cycles generates a vortex with a very large winding number. Our method significantly increases the fidelity of the pump for rapid pumping compared to the case without the counter-diabatic control, leading to the highest angular momentum per particle reported to date for the vortex pump. Our studies are based on numerical integration of the three-dimensional multi-component Gross-Pitaevskii equation which conveniently yields the density profiles, phase profiles, angular momentum, and other physically important quantities of the spin-1 system. Our results motivate the experimental realization of the vortex pump and studies of the rich physics it involves.
In a numerical experiment based on Gross-Pitaevskii formalism, we demonstrate unique topological quantum coherence in optically trapped Bose-Einstein condensates (BECs). Exploring the fact that vortices in rotating BEC can be pinned by a geometric arrangement of laser beams, we show the parameter range in which vortex-antivortex molecules or multiquantum vortices are formed as a consequence of the optically imposed symmetry. Being low-energy states, we discuss the conditions for spontaneous nucleation of these unique molecules and their direct experimental observation, and provoke the potential use of the phase print of an antivortex or a multiquantum vortex when realized in unconventional circumstances.
138 - V. Pietila , M. Mottonen , 2007
We study the energetic and dynamic stability of coreless vortices in nonrotated spin-1 Bose-Einstein condensates, trapped with a three-dimensional optical potential and a Ioffe-Pritchard field. The stability of stationary vortex states is investigated by solving the corresponding Bogoliubov equations. We show that the quasiparticle excitations corresponding to axisymmetric stationary states can be taken to be eigenstates of angular momentum in the axial direction. Our results show that coreless vortex states can occur as local or global minima of the condensate energy or become energetically or dynamically unstable depending on the parameters of the Ioffe-Pritchard field. The experimentally most relevant coreless vortex state containing a doubly quantized vortex in one of the hyperfine spin components turned out to have very non-trivial stability regions, and especially a quasiperiodic dynamic instability region which corresponds to splitting of the doubly quantized vortex.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا