No Arabic abstract
We calculate the efficiency of a rejection-free dynamic Monte Carlo method for $d$-dimensional off-lattice homogeneous particles interacting through a repulsive power-law potential $r^{-p}$. Theoretically we find the algorithmic efficiency in the limit of low temperatures and/or high densities is asymptotically proportional to $rho^{tfrac{p+2}{2}}T^{-tfrac{d}{2}}$ with the particle density $rho$ and the temperature $T$. Dynamic Monte Carlo simulations are performed in 1-, 2- and 3-dimensional systems with different powers $p$, and the results agree with the theoretical predictions.
We construct asymptotic arguments for the relative efficiency of rejection-free Monte Carlo (MC) methods compared to the standard MC method. We find that the efficiency is proportional to $exp{({const} beta)}$ in the Ising, $sqrt{beta}$ in the classical XY, and $beta$ in the classical Heisenberg spin systems with inverse temperature $beta$, regardless of the dimension. The efficiency in hard particle systems is also obtained, and found to be proportional to $(rhoc -rho)^{-d}$ with the closest packing density $rhoc$, density $rho$, and dimension $d$ of the systems. We construct and implement a rejection-free Monte Carlo method for the hard-disk system. The RFMC has a greater computational efficiency at high densities, and the density dependence of the efficiency is as predicted by our arguments.
We propose the clock Monte Carlo technique for sampling each successive chain step in constant time. It is built on a recently proposed factorized transition filter and its core features include its O(1) computational complexity and its generality. We elaborate how it leads to the clock factorized Metropolis (clock FMet) method, and discuss its application in other update schemes. By grouping interaction terms into boxes of tunable sizes, we further formulate a variant of the clock FMet algorithm, with the limiting case of a single box reducing to the standard Metropolis method. A theoretical analysis shows that an overall acceleration of ${rm O}(N^kappa)$ ($0 ! leq ! kappa ! leq ! 1$) can be achieved compared to the Metropolis method, where $N$ is the system size and the $kappa$ value depends on the nature of the energy extensivity. As a systematic test, we simulate long-range O$(n)$ spin models in a wide parameter regime: for $n ! = ! 1,2,3$, with disordered algebraically decaying or oscillatory Ruderman-Kittel-Kasuya-Yoshida-type interactions and with and without external fields, and in spatial dimensions from $d ! = ! 1, 2, 3$ to mean-field. The O(1) computational complexity is demonstrated, and the expected acceleration is confirmed. Its flexibility and its independence from the interaction range guarantee that the clock method would find decisive applications in systems with many interaction terms.
In this article, we present an event-driven algorithm that generalizes the recent hard-sphere event-chain Monte Carlo method without introducing discretizations in time or in space. A factorization of the Metropolis filter and the concept of infinitesimal Monte Carlo moves are used to design a rejection-free Markov-chain Monte Carlo algorithm for particle systems with arbitrary pairwise interactions. The algorithm breaks detailed balance, but satisfies maximal global balance and performs better than the classic, local Metropolis algorithm in large systems. The new algorithm generates a continuum of samples of the stationary probability density. This allows us to compute the pressure and stress tensor as a byproduct of the simulation without any additional computations.
We present a method for the direct evaluation of the difference between the free energies of two crystalline structures, of different symmetry. The method rests on a Monte Carlo procedure which allows one to sample along a path, through atomic-displacement-space, leading from one structure to the other by way of an intervening transformation that switches one set of lattice vectors for another. The configurations of both structures can thus be sampled within a single Monte Carlo process, and the difference between their free energies evaluated directly from the ratio of the measured probabilities of each. The method is used to determine the difference between the free energies of the fcc and hcp crystalline phases of a system of hard spheres.
In this work, we discuss the implications of a recently obtained equilibrium fluctuation-dissipation relation on the extension of the available Monte Carlo methods based on the consideration of the Gibbs canonical ensemble to account for the existence of an anomalous regime with negative heat capacities $C<0$. The resulting framework appears as a suitable generalization of the methodology associated with the so-called textit{dynamical ensemble}, which is applied to the extension of two well-known Monte Carlo methods: the Metropolis importance sample and the Swendsen-Wang clusters algorithm. These Monte Carlo algorithms are employed to study the anomalous thermodynamic behavior of the Potts models with many spin states $q$ defined on a $d$-dimensional hypercubic lattice with periodic boundary conditions, which successfully reduce the exponential divergence of decorrelation time $tau$ with the increase of the system size $N$ to a weak power-law divergence $taupropto N^{alpha}$ with $alphaapprox0.2$ for the particular case of the 2D 10-state Potts model.