Do you want to publish a course? Click here

Assigning confidence to inspiral gravitational wave candidates with Bayesian model selection

122   0   0.0 ( 0 )
 Added by John Veitch
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bayesian model selection provides a powerful and mathematically transparent framework to tackle hypothesis testing, such as detection tests of gravitational waves emitted during the coalescence of binary systems using ground-based laser interferometers. Although its implementation is computationally intensive, we have developed an efficient probabilistic algorithm based on a technique known as nested sampling that makes Bayesian model selection applicable to follow-up studies of candidate signals produced by on-going searches of inspiralling compact binaries. We discuss the performance of this approach, in terms of false alarm rate and detection probability of restricted second post-Newtonian inspiral waveforms from non-spinning compact objects in binary systems. The results confirm that this approach is a viable tool for detection tests in current searches for gravitational wave signals.

rate research

Read More

The analysis of gravitational wave data involves many model selection problems. The most important example is the detection problem of selecting between the data being consistent with instrument noise alone, or instrument noise and a gravitational wave signal. The analysis of data from ground based gravitational wave detectors is mostly conducted using classical statistics, and methods such as the Neyman-Pearson criteria are used for model selection. Future space based detectors, such as the emph{Laser Interferometer Space Antenna} (LISA), are expected to produced rich data streams containing the signals from many millions of sources. Determining the number of sources that are resolvable, and the most appropriate description of each source poses a challenging model selection problem that may best be addressed in a Bayesian framework. An important class of LISA sources are the millions of low-mass binary systems within our own galaxy, tens of thousands of which will be detectable. Not only are the number of sources unknown, but so are the number of parameters required to model the waveforms. For example, a significant subset of the resolvable galactic binaries will exhibit orbital frequency evolution, while a smaller number will have measurable eccentricity. In the Bayesian approach to model selection one needs to compute the Bayes factor between competing models. Here we explore various methods for computing Bayes factors in the context of determining which galactic binaries have measurable frequency evolution. The methods explored include a Reverse Jump Markov Chain Monte Carlo (RJMCMC) algorithm, Savage-Dickie density ratios, the Schwarz-Bayes Information Criterion (BIC), and the Laplace approximation to the model evidence. We find good agreement between all of the approaches.
Observations of gravitational waves from compact binary mergers have enabled unique tests of general relativity in the dynamical and non-linear regimes. One of the most important such tests are constraints on the post-Newtonian (PN) corrections to the phase of the gravitational wave signal. The values of these PN coefficients can be calculated within standard general relativity, and these values are different in many alternate theories of gravity. It is clearly of great interest to constrain these deviations based on gravitational wave observations. In the majority of such tests which have been carried out, and which yield by far the most stringent constraints, it is common to vary these PN coefficients individually. While this might in principle be useful for detecting certain deviations from standard general relativity, it is a serious limitation. For example, we would expect alternate theories of gravity to generically have additional parameters. The corrections to the PN coefficients would be expected to depend on these additional non-GR parameters whence, we expect that the various PN coefficients to be highly correlated. We present an alternate analysis here using data from the binary neutron star coalescence GW170817. Our analysis uses an appropriate linear combination of non-GR parameters that represent absolute deviations from the corresponding post-Newtonian inspiral coefficients in the TaylorF2 approximant phase. These combinations represent uncorrelated non-GR parameters which correspond to principal directions of their covariance matrix in the parameter subspace. Our results illustrate good agreement with GR. In particular, the integral non-GR phase is $Psi_{mbox{non-GR}} = (0.447pm253)times10^{-1}$ and the deviation from GR percentile is $p^{mbox{Dev-GR}}_{n}=25.85%$.
Advanced LIGO data contains numerous noise transients, or glitches, that have been shown to reduce the sensitivity of matched filter searches for gravitational waves from compact binaries by increasing the rate at which random coincidences occur. The presence of these transients has precipitated extensive work to establish that observed gravitational wave events are astrophysical in nature. We discuss the response of the PyCBC search for gravitational waves from stellar mass binaries to various common glitches that were observed during Advanced LIGOs first and second observing runs. We show how these transients can mimic waveforms from compact binary coalescences and quantify the likelihood that a given class of glitches will create a trigger in the search pipeline. We explore the specific waveform parameters that are most similar to different glitch classes and demonstrate how knowledge of these similarities can be used when evaluating the significance of gravitational-wave candidates.
With the advanced LIGO and Virgo detectors taking observations the detection of gravitational waves is expected within the next few years. Extracting astrophysical information from gravitational wave detections is a well-posed problem and thoroughly studied when detailed models for the waveforms are available. However, one motivation for the field of gravitational wave astronomy is the potential for new discoveries. Recognizing and characterizing unanticipated signals requires data analysis techniques which do not depend on theoretical predictions for the gravitational waveform. Past searches for short-duration un-modeled gravitational wave signals have been hampered by transient noise artifacts, or glitches, in the detectors. In some cases, even high signal-to-noise simulated astrophysical signals have proven difficult to distinguish from glitches, so that essentially any plausible signal could be detected with at most 2-3 $sigma$ level confidence. We have put forth the BayesWave algorithm to differentiate between generic gravitational wave transients and glitches, and to provide robust waveform reconstruction and characterization of the astrophysical signals. Here we study BayesWaves capabilities for rejecting glitches while assigning high confidence to detection candidates through analytic approximations to the Bayesian evidence. Analytic results are tested with numerical experiments by adding simulated gravitational wave transient signals to LIGO data collected between 2009 and 2010 and found to be in good agreement.
We introduce a novel methodology for the operation of an early %warning alert system for gravitational waves. It is based on short convolutional neural networks. We focus on compact binary coalescences, for light, intermediate and heavy binary-neutron-star systems. The signals are 1-dimensional time series $-$ the whitened time-strain $-$ injected in Gaussian noise built from the power-spectral density of the LIGO detectors at design sensitivity. We build short 1-dimensional convolutional neural networks to detect these types of events by training them on part of the early inspiral. We show that such networks are able to retrieve these signals from a small portion of the waveform.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا