Do you want to publish a course? Click here

Broadening the bandwidth of entangled photons: a step towards the generation of extremely short biphotons

193   0   0.0 ( 0 )
 Added by Martin Hendrych
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate a technique that allows to fully control the bandwidth of entangled photons independently of the frequency band of interest and of the nonlinear crystal. We show that this technique allows to generate nearly transform-limited biphotons with almost one octave of bandwidth (hundreds of THz) which corresponds to correlation times of just a few femtoseconds. The presented method becomes an enabling tool for attosecond entangled-photons quantum optics. The technique can also be used to generate paired photons with a very high degree of entanglement.



rate research

Read More

We study the generation of biphoton modally entangled states in such waveguide structures that lead to spectrum broadening. The process of spontaneous parametric down conversion (SPDC) has been considered for the biphoton generation. The main subject of our study is the dependence of the biphoton spectra on the structure spatial characteristics. The representation of the core structures as definite assembles of nonlinear layers allows us to find analytical description for biphoton spectrum. We show that chirped biphotons with discrete as well as continuous spectra can be generated depending on the waveguide structure. The conditions for spectrum discretization are obtained analytically. It is shown that the biphoton entangled states can be controlled by varying the parameters of the waveguide structure.
208 - M. Hendrych , M. Micuda , 2006
We demonstrate experimentally a new technique to control the bandwidth and the type of frequency correlations (correlation, anticorrelation, and even uncorrelation) of entangled photons generated by spontaneous parametric downconversion. The method is based on the control of the group velocities of the interacting waves. This technique can be applied in any nonlinear medium and frequency band of interest. It is also demonstrated that this technique helps enhance the quality of polarization entanglement even when femtosecond pulses are used as a pump.
We use semiconductor quantum dots, artificial atoms, to implement a scheme for deterministic generation of long strings of entangled photons in a cluster state, an important resource for quantum information processing. We demonstrate a prototype device which produces strings of a few hundred photons in which the entanglement persists over 5 sequential photons. The implementation follows a proposal by Lindner and Rudolph (Phys. Rev. Lett. 2009) which suggested periodic timed excitation of a precessing electron spin as a mechanism for entangling the electron spin with the polarization of the sequentially emitted photons. In our realization, the entangling qubit is a quantum dot confined dark exciton. By performing full quantum process tomography, we obtain the process map which fully characterizes the evolution of the system, containing the dark exciton and n photons after n applications of the periodic excitations. Our implementation may greatly reduce the resources needed for quantum information processing.
Bulk diamond phonons have been shown to be a versatile platform for the generation, storage, and manipulation of high-bandwidth quantum states of light. Here we demonstrate a diamond quantum memory that stores, and releases on demand, an arbitrarily polarized $sim$250 fs duration photonic qubit. The single-mode nature of the memory is overcome by mapping the two degrees of polarization of the qubit, via Raman transitions, onto two spatially distinct optical phonon modes located in the same diamond crystal. The two modes are coherently recombined upon retrieval and quantum process tomography confirms that the memory faithfully reproduces the input state with average fidelity $0.784pm0.004$ with a total memory efficiency of $(0.76pm0.03)%$. In an additional demonstration, one photon of a polarization-entangled pair is stored in the memory. We report that entanglement persists in the retrieved state for up to 1.3 ps of storage time. These results demonstrate that the diamond phonon platform can be used in concert with polarization qubits, a key requirement for polarization-encoded photonic processing.
Light incident upon molecules trigger fundamental processes in diverse systems present in nature. However, under natural conditions, such as sunlight illumination, it is impossible to assign known times for photon arrival owing to continuous pumping, and therefore, the photo-induced processes cannot be easily investigated. In this work, we theoretically demonstrate that characteristics of sunlight photons such as photon number statistics and spectral distribution can be emulated through quantum entangled photon pair generated with the parametric down-conversion (PDC). We show that the average photon number of the sunlight in a specific frequency spectrum, e.g., the visible light, can be reconstructed by adjusting the PDC crystal length and pump frequency, and thereby molecular dynamics induced by the pseudo-sunlight can be investigated. The entanglement time, which is the hallmark of quantum entangled photons, can serve as a control knob to resolve the photon arrival times, enabling investigations on real-time dynamics triggered by the pseudo-sunlight photons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا