Do you want to publish a course? Click here

Evidence for an intermediate line region in AGNs inner torus region and its evolution from narrow to broad line Seyfert I galaxies

197   0   0.0 ( 0 )
 Added by Shuang Nan Zhang
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

A two-components model for Broad Line Region (BLR) of Active Galactic Nuclei (AGN) has been suggested for many years but not widely accepted (e.g., Hu et al. 2008; Sulentic et al. 2000; Brotherton et al. 1996; Mason et al. 1996). This model indicates that the broad line can be described with superposition of two Gaussian components (Very Broad Gaussian Component (VBGC) and InterMediate Gaussian Component (IMGC)) which are from two physically distinct regions; i.e., Very Broad Line Region (VBLR) and InterMediate Line Region (IMLR). We select a SDSS sample to further confirm this model and give detailed analysis to the geometry, density and evolution of these two regions. Micro-lensing result of BLR in J1131-1231 and some unexplained phenomena in Reverberation Mapping (RM) experiment provide supportive evidence for this model. Our results indicate that the radius obtained from the emission line RM normally corresponds to the radius of the VBLR, and the existence of the IMGC may affect the measurement of the black hole masses in AGNs. The deviation of NLS1s from the M-sigma relation and the Type II AGN fraction as a function of luminosity can be explained in this model in a coherent way. The evolution of the two emission regions may be related to the evolutionary stages of the broad line regions of AGNs from NLS1s to BLS1s. Based on the results presented here, a unified picture of hierarchical evolution of black hole, dust torus and galaxy is proposed.



rate research

Read More

200 - Enrico Congiu 2017
We present our recent results about the extended narrow-line region (ENLR) of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212) obtained by modelling the observed line profiles and spectra with composite models (photoionization+shocks) in the different regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as a) the contribution of shocks in ionizing the high velocity gas, b) the complex kinematics showed by the profile of the emission lines, c) the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.
This work studies the optical emission line properties and physical conditions of the narrow line region (NLR) of seven narrow-line Seyfert 1 galaxies (NLS1). Our results show that the flux carried out by the narrow component of H-beta is, on average, 50% of the total line flux. As a result, the [OIII] 5007/H-beta ratio emitted in the NLR varies from 1 to 5, instead of the universally adopted value of 10. This has strong implications for the required spectral energy distribution that ionizes the NLR gas. Photoionization models that consider a NLR composed of a combination of matter-bounded and ionization-bounded clouds are successful at explaining the low [OIII] 5007/H-beta ratio and the weakness of low-ionization lines of NLS1s. Variation of the relative proportion of these two type of clouds nicely reproduce the dispersion of narrow line ratios found among the NLS1 sample. Assuming similar physical model parameters of both NLS1s and the normal Seyfert 1 galaxy NGC 5548, we show that the observed differences of emission line ratios between these two groups can be explained in terms of the shape of the input ionizing continuum. Narrow emission line ratios of NLS1s are better reproduced by a steep power-law continuum in the EUV -- soft X-ray region, with spectral index alpha ~ -2. Flatter spectral indices (alpha ~ -1.5) match the observed line ratios of NGC 5548 but are unable to provide a good match to the NLS1 ratios. This result is consistent with ROSAT observations of NLS1s, which show that these objects are characterized by steeper power-law indices than those of Sy1 galaxies with strong broad optical lines.
376 - Nicola Bennert 2006
We study the narrow-line region (NLR) of six Seyfert-1 and six Seyfert-2 galaxies by means of spatially resolved optical spectroscopy and photoionization modelling. From spatially resolved spectral diagnostics, we find a transition between the AGN-excited NLR and the surrounding star-forming regions, allowing us to determine the NLR size independent of stellar contamination. CLOUDY photoionization models show that the observed transition represents a true difference in ionization source and cannot be explained by variations of physical parameters. The electron density and ionization parameter decrease with radius indicating that the NLR is photoionized by the central source only. The velocity field suggests a disky NLR gas distribution.
In this paper we explore the intermediate line region (ILR) by using the photoionisation simulations of the gas clouds present at different radial distances from the center, corresponding to the locations from BLR out to NLR in four types of AGNs. We let for the presence of dust whenever conditions allow for dust existence. All spectral shapes are taken from the recent multi-wavelength campaigns. The cloud density decreases with distance as a power law. We found that the slope of the power law density profile does not affect the line emissivity radial profiles of major emission lines: H${beta}$, He~II, Mg~II, C~III] ~and [O~III]. When the density of the cloud at the sublimation radius is as high as 10$^{11.5}$ cm$^{-3}$, the ILR should clearly be seen in the observations independently of the shape of the illuminating radiation. Moreover, our result is valid for low ionization nuclear emission regions of active galaxies.
Optical and near-mid-infrared reverberation mapping data obtained at Universit{a}tssternwarte Bochum in Chile and with the Spitzer Space Telescope allow us to explore the geometry of both the H$alpha$ BLR and the dust torus for the nearby Seyfert 1 galaxy WPVS,48. On average, the H$alpha$ variations lag the blue AGN continuum by about 18 days, while the dust emission variations lag by 70 days in the J+K and by 90 days in the L+M bands. The IR echoes are sharp, while the H$alpha$ echo is smeared. This together favours a bowl-shaped toroidal geometry where the dust sublimation radius is defined by a bowl surface, which is virtually aligned with a single iso-delay surface, thus leading to the sharp IR echoes. The BLR clouds, however, are located inside the bowl and spread over a range of iso-delay surfaces, leading to a smeared echo.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا