Do you want to publish a course? Click here

Sudden death, birth and stable entanglement in a two-qubit Heisenberg XY spin chain

239   0   0.0 ( 0 )
 Added by Chuanjia Shan
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Taking the decoherence effect due to population relaxation into account, we investigate the entanglement properties for two qubits in the Heisenberg XY interaction and subject to an external magnetic field. It is found that the phenomenon of entanglement sudden death (ESD) as well as sudden birth(ESB) appear during the evolution process for particular initial states. The influence of the external magnetic field and the spin environment on ESD and ESB are addressed in detail. It is shown that the concurrence, a measure of entanglement, can be controlled by tuning the parameters of the spin chain, such as the anisotropic parameter, external magnetic field, and the coupling strength with their environment. In particular, we find that a critical anisotropy constant exists, above which ESB vanishes while ESD appears. It is also notable that stable entanglement, which is independent of different initial states of the qubits, occurs even in the presence of decoherence.



rate research

Read More

We study the energy level crossings of the states and thermal fidelity for a two-qubit system in the presence of a transverse and inhomogeneous magnetic field. It is shown clearly the effects of the anisotropic factor of the magnetic field through the contour figures of energy level crossing in two subspaces, the isotropy subspace and anisotropy subspace. We calculate the quantum fidelity between the ground state and the state of the system at temperature $T$, and the results show the strong effect of the anisotropic factor again. In addition, by making use of the transition of Yangian generators in the tensor product space, we study the evolution of the thermal fidelity after the transition. The potential applications of Yangian algebra, as a switch to turn on or off the fidelity, are proposed.
We investigate the entanglement evolution of two qubits interacting with a common environment trough an Heisenberg XX mechanism. We reveal the possibility of realizing the phenomenon of entanglement sudden death as well as the entanglement sudden birth acting on the environment. Such analysis is of maximal interest at the light of the large applications that spin systems have in quantum information theory.
We explore the dynamics of the entanglement in a semiconductor cavity QED containing a quantum well. We show the presence of sudden birth and sudden death for some particular sets of the system parameters.
Distillability sudden death and sudden birth in a two-qutrit system under decoherence of finite temperature is studied in detail. By using of the negativity and realignment criterion, it is shown that certain initial prepared free entangled states may become bound entangled or separable states in a finite time. Moreover, initial prepared bound entangled or separable states also may become distillabile entangled states in a finite time.
The occurrence of entanglement sudden death in the evolution of a bipartite system depends on both the initial state and the channel responsible for the evolution. An extreme case is that of entanglement braking channels, which are channels that acting on only one of the subsystems drives them to full disentanglement regardless of the initial state. In general, one can find certain combinations of initial states and channels acting on one or both subsystems that can result in entanglement sudden death or not. Neither the channel nor the initial state, but their combination, is responsible for this effect, but their combination. In this work we show that, in all cases, when entanglement sudden death occurs, the evolution can be mapped to that of an effective entanglement breaking channel on a modified initial state. Our results allow to anticipate which states will suffer entanglement sudden death or not for a given evolution. An experiment with polarization entangled photons demonstrates the utility of this result in a variety of cases.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا