Do you want to publish a course? Click here

Trojan Stars in the Galactic Center

144   0   0.0 ( 0 )
 Added by Michiko Fujii
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We performed, for the first time, the simulation of spiral-in of a star cluster formed close to the Galactic center (GC) using a fully self-consistent $N$-body model. In our model, the central super-massive black hole (SMBH) is surrounded by stars and the star cluster. Not only are the orbits of stars and the cluster stars integrated self-consistently, but the stellar evolution, collisions and merging of the cluster stars are also included. We found that an intermediate-mass black hole (IMBH) is formed in the star cluster and stars escaped from the cluster are captured into a 1:1 mean motion resonance with the IMBH. These Trojan stars are brought close to the SMBH by the IMBH, which spirals into the GC due to the dynamical friction. Our results show that, once the IMBH is formed, it brings the massive stars to the vicinity of the central SMBH even after the star cluster itself is disrupted. Stars carried by the IMBH form a disk similar to the observed disks and the core of the cluster including the IMBH has properties similar to those of IRS13E, which is a compact assembly of several young stars.



rate research

Read More

We present results from K band slit scan observations of a ~20x20 region of the Galactic center (GC) in two separate epochs more than five years apart. The high resolution (R>=14,000) observations allow the most accurate radial velocity and acceleration measurements of the stars in the central parsec of the Galaxy. Detected stars can be divided into three groups based on the CO absorption band heads at ~2.2935 microns and the He I lines at ~2.0581 microns and ~2.112, 2.113 microns: cool, narrow-line hot and broad-line hot. The radial velocities of the cool, late-type stars have approximately a symmetrical distribution with its center at ~-7.8(+/-10.3) km/s and a standard deviation ~113.7(+/-10.3) km/s. Although our statistics are dominated by the brightest stars, we estimate a central black hole mass of 3.9(+/-1.1) million solar masses, consistent with current estimates from complete orbits of individual stars. Our surface density profile and the velocity dispersion of the late type stars support the existence of a low density region at the Galactic center suggested by earlier observations. Many hot, early-type stars show radial velocity changes higher than maximum values allowed by pure circular orbital motions around a central massive object, suggesting that the motions of these stars greatly deviate from circular orbital motions around the Galactic center. The correlation between the radial velocities of the early type He I stars and their declination offsets from Sagittarius A* suggests that a systematic rotation is present for the early-type population. No figure rotation around the Galactic center for the late type stars is supported by the new observations.
Over the last 15 years, around a hundred very young stars have been observed in the central parsec of our Galaxy. While the presence of young stars forming one or two stellar disks at approx. 0.1 pc from the supermassive black hole (SMBH) can be understood through star formation in accretion disks, the origin of the S stars observed a factor of 10 closer to the SMBH has remained a major puzzle. Here we show the S stars to be a natural consequence of dynamical interaction of two stellar disks at larger radii. Due to precession and Kozai interaction, individual stars achieve extremely high eccentricities at random orientation. Stellar binaries on such eccentric orbits are disrupted due to close passages near the SMBH, leaving behind a single S star on a much tighter orbit. The remaining star may be ejected from the vicinity of the SMBH, thus simultaneously providing an explanation for the observed hypervelocity stars in the Milky Way halo.
93 - K. Cunha , V. Smith , K. Sellgren 2007
We discuss oxygen and iron abundance patterns in K and M red-giant members of the Galactic bulge and in the young and massive M-type stars inhabiting the very center of the Milky Way. The abundance results from the different bulge studies in the literature, both in the optical and the infrared, indicate that the [O/Fe]-[Fe/H] relation in the bulge does not follow the disk relation, with [O/Fe] values falling above those of the disk. Based on these elevated values of [O/Fe] extending to large Fe abundances, it is suggested that the bulge underwent a rapid chemical enrichment with perhaps a top-heavy initial mass function. The Galactic Center stars reveal a nearly uniform and slightly elevated (relative to solar) iron abundance for a studied sample which is composed of 10 red giants and supergiants. Perhaps of more significance is the fact that the young Galactic Center M-type stars show abundance patterns that are reminiscent of those observed for the bulge population and contain enhanced abundance ratios of alpha-elements relative to either the Sun or Milky Way disk at near-solar metallicities.
Recent observations of the Galactic center revealed a nuclear disk of young OB stars near the massive black hole (MBH), in addition to many similar outlying stars with higher eccentricities and/or high inclinations relative to the disk (some of them possibly belonging to a second disk). In addition, observations show the existence of young B stars (the S-cluster) in an isotropic distribution in the close vicinity of the MBH ($<0.04$ pc). We use extended N-body simulations to probe the dynamical evolution of these two populations. We show that the stellar disk could have evolved to its currently observed state from a thin disk of stars formed in a gaseous disk, and that the dominant component in its evolution is the interaction with stars in the cusp around the MBH. We also show that the currently observed distribution of the S-stars could be consistent with a capture origin through 3-body binary-MBH interactions. In this scenario the stars are captured at highly eccentric orbits, but scattering by stellar black holes could change their eccentricity distribution to be consistent with current observations.
We present a new directly-observable statistic which uses sky position and proper motion of stars near the Galactic center massive black hole to identify populations with high orbital eccentricities. It is most useful for stars with large orbital periods for which dynamical accelerations are difficult to determine. We apply this statistic to a data set of B-stars with projected radii 0.1 < p < 25 (~0.004 - 1 pc) from the massive black hole in the Galactic center. We compare the results with those from N-body simulations to distinguish between scenarios for their formation. We find that the scenarios favored by the data correlate strongly with particular K-magnitude intervals, corresponding to different zero-age main-sequence (MS) masses and lifetimes. Stars with 14 < mK < 15 (15 - 20 solar masses, t_{MS} = 8-13 Myr) match well to a disk formation origin, while those with mK > 15 (<15 solar masses, t_{MS} >13 Myr), if isotropically distributed, form a population that is more eccentric than thermal, which suggests a Hills binary-disruption origin.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا