No Arabic abstract
Several large-scale interferometric gravitational-wave detectors use resonant arm cavities to enhance the light power in the interferometer arms. These cavities are based on different optical designs: One design uses wedged input mirrors to create additional optical pick-off ports for deriving control signals. The second design employs input mirrors without wedge and thus offers the possibility to use the etalon effect inside the input mirrors for tuning the finesse of the arm cavities. In this article we introduce a concept of maximized flexibility that combines both of these options, by featuring wedges at the input mirrors and using the etalon effect instead in the end mirrors. We present a design for the arm cavities of Advanced Virgo. We have used numerical simulations to derive requirements for the manufacturing accuracy of an end mirror etalon for Advanced Virgo. Furthermore, we give analytical approximations for the achievable tuning range of the etalon in dependence on the reflectance, the curvature and the orientation of the etalon back surface.
We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approximately one second in the 32-4096 Hz frequency band with minimal assumptions about the signal properties, thus targeting a wide variety of sources. We also perform a matched-filter search for gravitational-wave transients from cosmic string cusps for which the waveform is well-modeled. The unmodeled search detected gravitational waves from several binary black hole mergers which have been identified by previous analyses. No other significant events have been found by either the unmodeled search or the cosmic string search. We thus present search sensitivity for a variety of signal waveforms and report upper limits on the source rate-density as function of the characteristic frequency of the signal. These upper limits are a factor of three lower than the first observing run, with a $50%$ detection probability for gravitational-wave emissions with energies of $sim10^{-9}M_odot c^2$ at 153 Hz. For the search dedicated to cosmic string cusps we consider several loop distribution models, and present updated constraints from the same search done in the first observing run.
This paper presents the results of a search for generic short-duration gravitational-wave transients in data from the third observing run of Advanced LIGO and Advanced Virgo. Transients with durations of milliseconds to a few seconds in the 24--4096 Hz frequency band are targeted by the search, with no assumptions made regarding the incoming signal direction, polarization or morphology. Gravitational waves from compact binary coalescences that have been identified by other targeted analyses are detected, but no statistically significant evidence for other gravitational wave bursts is found. Sensitivities to a variety of signals are presented. These include updated upper limits on the source rate-density as a function of the characteristic frequency of the signal, which are roughly an order of magnitude better than previous upper limits. This search is sensitive to sources radiating as little as $sim$10$^{-10} M_{odot} c^2$ in gravitational waves at $sim$70 Hz from a distance of 10~kpc, with 50% detection efficiency at a false alarm rate of one per century. The sensitivity of this search to two plausible astrophysical sources is estimated: neutron star f-modes, which may be excited by pulsar glitches, as well as selected core-collapse supernova models.
The field of gravitational-wave astronomy has been opened up by gravitational-wave observations made with interferometric detectors. This review surveys the current state-of-the-art in gravitational-wave detectors and data analysis methods currently used by the Laser Interferometer Gravitational-Wave Observatory in the United States and the Virgo Observatory in Italy. These analysis methods will also be used in the recently completed KAGRA Observatory in Japan. Data analysis algorithms are developed to target one of four classes of gravitational waves. Short duration, transient sources include compact binary coalescences, and burst sources originating from poorly modelled or unanticipated sources. Long duration sources include sources which emit continuous signals of consistent frequency, and many unresolved sources forming a stochastic background. A description of potential sources and the search for gravitational waves from each of these classes are detailed.
We introduce a concept that uses detuned arm cavities to increase the shot noise limited sensitivity of LIGO without increasing the light power inside the arm cavities. Numerical simulations show an increased sensitivity between 125 and 400 Hz, with a maximal improvement of about 80% around 225 Hz, while the sensitivity above 400Hz is decreased. Furthermore our concept is found to give a sensitivity similar to that of a conventional RSE configuration with a Signal-Recycling mirror of moderate reflectivity. In the near future detuned arm cavities might be a beneficial alternative to RSE, due the potentially less hardware intensive implementation of the proposed concept.
After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well-suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into short $ lesssim 1~$,s and long $ gtrsim 1~$,s duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgos third observing run from April 2019 to March 2020. For this search, we use minimal assumptions for the sky location, event time, waveform morphology, and duration of the source. The search covers the range of $2~text{--}~ 500$~s in duration and a frequency band of $24 - 2048$ Hz. We find no significant triggers within this parameter space; we report sensitivity limits on the signal strength of gravitational waves characterized by the root-sum-square amplitude $h_{mathrm{rss}}$ as a function of waveform morphology. These $h_{mathrm{rss}}$ limits improve upon the results from the second observing run by an average factor of 1.8.