Do you want to publish a course? Click here

Red Nuggets at z~1.5: Compact passive galaxies and the formation of the Kormendy Relation

141   0   0.0 ( 0 )
 Added by Roberto Abraham
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of NICMOS imaging of a sample of 16 high mass passively evolving galaxies with 1.3<z<2, taken primarily from the Gemini Deep Deep Survey. Around 80% of galaxies in our sample have spectra dominated by stars with ages >1 Gyr. Our rest-frame R-band images show that most of these objects have compact regular morphologies which follow the classical R^1/4 law. These galaxies scatter along a tight sequence in the Kormendy relation. Around one-third of the massive red objects are extraordinarily compact, with effective radii under one kiloparsec. Our NICMOS observations allow the detection of such systems more robustly than is possible with optical (rest-frame UV) data, and while similar systems have been seen at z>2, this is the first time such systems have been detected in a rest-frame optical survey at 1.3<z<2. We refer to these compact galaxies as red nuggets. Similarly compact massive galaxies are completely absent in the nearby Universe. We introduce a new stellar mass Kormendy relation (stellar mass density vs size) which isolates the effects of size evolution from those of luminosity and color evolution. The 1.1 < z < 2 passive galaxies have mass densities that are an order of magnitude larger then early type galaxies today and are comparable to the compact distant red galaxies at 2 < z < 3. We briefly consider mechanisms for size evolution in contemporary models focusing on equal-mass mergers and adiabatic expansion driven by stellar mass loss. Neither of these mechanisms appears able to transform the high-redshift Kormendy relation into its local counterpart. <ABRIDGED>



rate research

Read More

We present the morphological analysis based on HST-NIC2 (0.075 arcsec/pixel) images in the F160W filter of a sample of 9 massive field (> 10^{11} M_odot) galaxies spectroscopically classified as early-types at 1.2<z<1.7. Our analysis shows that all of them are bulge dominated systems. In particular, 6 of them are well fitted by a de Vaucouleurs profile (n=4) suggesting that they can be considered pure elliptical galaxies. The remaining 3 galaxies are better fitted by a Sersic profile with index 1.9<n<2.3 suggesting that a disk-like component could contribute up to 30% to the total light of these galaxies. We derived the effective radius R_e and the mean surface brightness <mu_e> within R_e of our galaxies and we compared them with those of early-types at lower redshifts. We find that the surface brightness <mu_e> of our galaxies should get fainter by 2.5 mag from z~1.5 to z~0 to match the surface brightness of the local ellipticals with comparable R_e, i.e. the local Kormendy relation. Luminosity evolution without morphological changes can only explain half of this effect, as the maximum dimming expected for an elliptical galaxy is ~1.6 mag in this redshift range. Thus, other parameters, possibly structural, may undergo evolution and play an important role in reconciling models and observations. Hypothesizing an evolution of the effective radius of galaxies we find that R_e should increase by a factor 1.5 from z~1.5 to z~0.
Quenched galaxies at z>2 are nearly all very compact relative to z~0, suggesting a physical connection between high stellar density and efficient, rapid cessation of star-formation. We present restframe UV spectra of Lyman-break galaxies (LBGs) at z~3 selected to be candidate progenitors of quenched galaxies at z~2 based on their compact restframe optical sizes and high surface density of star-formation. We compare their UV properties to those of more extended LBGs of similar mass and star formation rate (non-candidates). We find that candidate progenitors have faster ISM gas velocities and higher equivalent widths of interstellar absorption lines, implying larger velocity spread among absorbing clouds. Candidates deviate from the relationship between equivalent widths of Lyman-alpha and interstellar absorption lines in that their Lyman-alpha emission remains strong despite high interstellar absorption, possibly indicating that the neutral HI fraction is patchy such that Lyman-alpha photons can escape. We detect stronger CIV P-Cygni features (emission and absorption) and HeII emission in candidates, indicative of larger populations of metal rich Wolf-Rayet stars compared to non-candidates. The faster bulk motions, broader spread of gas velocity, and Lyman-alpha properties of candidates are consistent with their ISM being subject to more energetic feedback than non-candidates. Together with their larger metallicity (implying more evolved star-formation activity) this leads us to propose, if speculatively, that they are likely to quench sooner than non-candidates, supporting the validity of selection criteria used to identify them as progenitors of z~2 passive galaxies. We propose that massive, compact galaxies undergo more rapid growth of stellar mass content, perhaps because the gas accretion mechanisms are different, and quench sooner than normally-sized LBGs at these early epochs.
We use cosmological simulations to study a characteristic evolution pattern of high redshift galaxies. Early, stream-fed, highly perturbed, gas-rich discs undergo phases of dissipative contraction into compact, star-forming systems (blue nuggets) at z~4-2. The peak of gas compaction marks the onset of central gas depletion and inside-out quenching into compact ellipticals (red nuggets) by z~2. These are sometimes surrounded by gas rings or grow extended dry stellar envelopes. The compaction occurs at a roughly constant specific star-formation rate (SFR), and the quenching occurs at a constant stellar surface density within the inner kpc ($Sigma_1$). Massive galaxies quench earlier, faster, and at a higher $Sigma_1$ than lower-mass galaxies, which compactify and attempt to quench more than once. This evolution pattern is consistent with the way galaxies populate the SFR-radius-mass space, and with gradients and scatter across the main sequence. The compaction is triggered by an intense inflow episode, involving (mostly minor) mergers, counter-rotating streams or recycled gas, and is commonly associated with violent disc instability. The contraction is dissipative, with the inflow rate >SFR, and the maximum $Sigma_1$ anti-correlated with the initial spin parameter, as predicted by Dekel & Burkert (2014). The central quenching is triggered by the high SFR and stellar/supernova feedback (possibly also AGN feedback) due to the high central gas density, while the central inflow weakens as the disc vanishes. Suppression of fresh gas supply by a hot halo allows the long-term maintenance of quenching once above a threshold halo mass, inducing the quenching downsizing.
106 - J. Diaz Tello 2016
Aims. We present a spectroscopic study of the properties of 64 Balmer break galaxies that show signs of star formation. The studied sample of star-forming galaxies spans a redshift range from 0.094 to 1.475 with stellar masses in the range 10$^{8}-$10$^{12}$ $M_{odot}$. The sample also includes eight broad emission line galaxies with redshifts between 1.5 $<z<$ 3.0. Methods. We derived star formation rates (SFRs) from emission line luminosities and investigated the dependence of the SFR and specific SFR (SSFR) on the stellar mass and color. Furthermore, we investigated the evolution of these relations with the redshift. Results. We found that the SFR correlates with the stellar mass, our data is consistent with previous results from other authors in that there is a break in the correlation, which reveals the presence of massive galaxies with lower SFR values (i.e., decreasing star formation). We also note an anticorrelation for the SSFR with the stellar mass. Again in this case, our data is also consistent with a break in the correlation, revealing the presence of massive star-forming galaxies with lower SSFR values, thereby increasing the anticorrelation. These results might suggest a characteristic mass ($M_{0}$) at which the red sequence could mostly be assembled. In addition, at a given stellar mass, high-redshift galaxies have on average higher SFR and SSFR values than local galaxies. Finally, we explored whether a similar trend could be observed with redshift in the SSFR$-(u-B)$ color diagram, and we hypothesize that a possible $(u-B)_{0}$ break color may define a characteristic color for the formation of the red sequence.
We search the five CANDELS fields (COSMOS, EGS, GOODS-North, GOODS-South and UDS) for passively evolving a.k.a. red and dead massive galaxies in the first 2 Gyr after the Big Bang, integrating and updating the work on GOODS-South presented in our previous paper. We perform SED-fitting on photometric data, with top-hat star-formation histories to model an early and abrupt quenching, and using a probabilistic approach to select only robust candidates. Using libraries without (with) spectral lines emission, starting from a total of more than 20,000 $z>3$ sources we end up with 102 (40) candidates, including one at $z=6.7$. This implies a minimal number density of $1.73 pm 0.17 times 10^{-5}$ ($6.69 pm 1.08 times 10^{-6}$) Mpc$^{-3}$ for $3<z<5$; applying a correction factor to account for incompleteness yields $2.30 pm 0.20 times 10^{-5}$. We compare these values with those from five recent hydrodynamical cosmological simulations, finding a reasonable agreement at $z<4$; tensions arise at earlier epochs. Finally, we use the star-formation histories from the best-fit models to estimate the contribution of the high-redshift passive galaxies to the global Star Formation Rate Density during their phase of activity, finding that they account for $sim5-10%$ of the total star formation at $3<z<8$, despite being only $sim0.5%$ of the total in number. The resulting picture is that early and strong star formation activity, building massive galaxies on short timescales and followed by a quick and abrupt quenching, is a rare but crucial phenomenon in the early Universe: the evolution of the cosmos must be heavily influenced by the short but powerful activity of these pristine monsters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا