Stochastic quantization at finite chemical potential


Abstract in English

A nonperturbative lattice study of QCD at finite chemical potential is complicated due to the complex fermion determinant and the sign problem. Here we apply the method of stochastic quantization and complex Langevin dynamics to this problem. We present results for U(1) and SU(3) one link models and QCD at finite chemical potential using the hopping expansion. The phase of the determinant is studied in detail. Even in the region where the sign problem is severe, we find excellent agreement between the Langevin results and exact expressions, if available. We give a partial understanding of this in terms of classical flow diagrams and eigenvalues of the Fokker-Planck equation.

Download