Do you want to publish a course? Click here

Bagger-Lambert theory on an orbifold and its relation to Chern-Simons-matter theories

116   0   0.0 ( 0 )
 Added by Nakwoo Kim
 Publication date 2010
  fields
and research's language is English
 Authors Nakwoo Kim




Ask ChatGPT about the research

We consider how to take an orbifold reduction for the multiple M2-brane theory recently proposed by Bagger and Lambert, and discuss its relation to Chern-Simons theories. Starting from the infinite dimensional 3-algebra realized as the Nambu bracket on a 3-torus, we first suggest an orbifolding prescription for various fields. Then we introduce a second truncation, which effectively reduces the internal space to a 2-torus. Eventually one obtains a large-N limit of Chern-Simons gauge theories coupled to matter fields. We consider an abelian orbifold C^4/Z_n, and illustrate how one can arrive at the N=6 supersymmetric theories with gauge groups U(N) x U(N) and Chern-Simons levels (k,-k), as recently constructed by Aharony, Bergman, Jafferis and Maldacena.



rate research

Read More

We show that the N=8 superconformal Bagger-Lambert theory based on the Lorentzian 3-algebra can be derived by taking a certain scaling limit of the recently proposed N=6 superconformal U(N)xU(N) Chern-Simons-matter theories at level (k, -k). The scaling limit (and Inonu-Wigner contraction) is to scale the trace part of the bifundamental fields as X_0 -> lambda^{-1} X_0 and an axial combination of the two gauge fields as B_{mu} -> lambda B_mu. Simultaneously we scale the level as k -> lambda^{-1} k and then take lambda -> 0 limit. Interestingly the same constraint equation partial^2 X_0=0 is derived by imposing finiteness of the action. In this scaling limit, M2-branes are located far from the origin of C^4/Z_k compared to their fluctuations and Z_k identification becomes a circle identification. Hence the scaled theory describes N=8 supersymmetric theory of 2-branes with dynamical coupling. The coupling constant is promoted to a space-time dependent SO(8) vector X_0^I and we show that the scaled theory has a generalized conformal symmetry as well as manifest SO(8) with the transformation of the background fields X_0^I.
390 - Mitsutoshi Fujita 2013
We study large N orbifold equivalences involving three-dimensional N=3 and N=4 supersymmetric quiver Chern-Simons-matter theories. The gravity dual of the N=3 Chern-Simons-matter theory is described by AdS4xM7 where the tri-Sasaki manifold M7 is known as the Eschenburg space. We find evidence that a large N orbifold equivalence for the N=4 case continues from the M-theory limit to the weak-coupling limit. For the N=3 case, we find consistent large N equivalences involving a projection changing the nodes of the gauge groups, and also for a projection changing Chern-Simons levels where for the latter projection, the BPS monopole operators behave as expected in large N equivalence. For both cases we show, using the gravity dual, that the critical temperature of the confinement/deconfinement transition does not change and the entropy behaves as expected under the orbifold equivalence. We show that large N orbifold equivalence changing Chern-Simons levels can be explained using the planar equivalence in the mirror dual.
151 - Jongwook Kim , Bum-Hoon Lee 2009
Among newly discovered M2, M5 objects in the Bagger-Lambert-Gustavsson theory, our interest is about half BPS vortices which are covariantly holomorphic curves in transverse coordinates. We restrict ourselves to the case where the global symmetry is broken to so(2) x so(2)x so(4) for the mass deformed Bagger-Lambert theory. A localized object with finite energy exists in this theory where the mass parameter supports regularity. It is time independent but carries angular momentum coming solely from the gauge potential by which the energy is bounded below.
This is a compact review of recent results on supersymmetric Wilson loops in ABJ(M) and related theories. It aims to be a quick introduction to the state of the art in the field and a discussion of open problems. It is divided into short chapters devoted to different questions and techniques. Some new results, perspectives and speculations are also presented. We hope this might serve as a baseline for further studies of this topic.
We present new circular Wilson loops in three-dimensional N=4 quiver Chern-Simons-matter theory on S^3. At any given node of the quiver, a two-parameter family of operators can be obtained by opportunely deforming the 1/4 BPS Gaiotto-Yin loop. Including then adjacent nodes, the coupling to the bifundamental matter fields allows to enlarge this family and to construct loop operators based on superconnections. We discuss their classification, which depends on both discrete data and continuous parameters subject to an identification. The resulting moduli spaces are conical manifolds, similar to the conifold of the 1/6 BPS loops of the ABJ(M) theory.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا