Do you want to publish a course? Click here

Non-enlargeable operators and self-cancelling operators

86   0   0.0 ( 0 )
 Added by B. Svaiter F.
 Publication date 2010
  fields
and research's language is English
 Authors B. F. Svaiter




Ask ChatGPT about the research

The epsilon-enlargement of a maximal monotone operator is a construct similar to the Br{o}ndsted and Rocakfellar epsilon-subdifferential enlargement of the subdifferential. Like the epsilon-subdifferential, the epsilon-enlargement of a maximal monotone operator has practical and theoretical applications. In a recent paper in Journal of Convex Analysis Burachik and Iusem studied conditions under which a maximal monotone operator is non-enlargeable, that is, its epsilon-enlargement coincides with the operator. Burachik and Iusem studied these non-enlargeable operators in reflexive Banach spaces, assuming the interior of the domain of the operator to be nonempty. In the present work, we remove the assumption on the domain of non-enlargeable operators and also present partial results for the non-reflexive case.



rate research

Read More

Let $X$ be a space of homogeneous type and let $L$ be a nonnegative self-adjoint operator on $L^2(X)$ which satisfies a Gaussian estimate on its heat kernel. In this paper we prove a Homander type spectral multiplier theorem for $L$ on the Besov and Triebel--Lizorkin spaces associated to $L$. Our work not only recovers the boundedness of the spectral multipliers on $L^p$ spaces and Hardy spaces associated to $L$, but also is the first one which proves the boundedness of a general spectral theorem on Besov and Triebel--Lizorkin spaces.
141 - Lawrence G. Brown 2014
The main result (roughly) is that if (H_i) converges weakly to H and if also f(H_i) converges weakly to f(H), for a single strictly convex continuous function f, then (H_i) must converge strongly to H. One application is that if f(pr(H)) = pr(f(H)), where pr denotes compression to a closed subspace M, then M must be invariant for H. A consequence of this is the verification of a conjecture of Arveson, that Theorem 9.4 of [Arv] remains true in the infinite dimensional case. And there are two applications to operator algebras. If h and f(h) are both quasimultipliers, then h must be a multiplier. Also (still roughly stated) if h and f(h) are both in pA_sa p, for a closed projection p, then h must be strongly q-continuous on p.
129 - Helge Glockner 2020
For suitable finite-dimensional smooth manifolds M (possibly with various kinds of boundary or corners), locally convex topological vector spaces F and non-negative integers k, we construct continuous linear operators S_n from the space of F-valued k times continuously differentiable functions on M to the corresponding space of smooth functions such that S_n(f) converges to f in C^k(M,F) as n tends to infinity, uniformly for f in compact subsets of C^k(M,F). We also study the existence of continuous linear right inverses for restriction maps from C^k(M,F) to C^k(L,F) if L is a closed subset of M, endowed with a C^k-manifold structure turning the inclusion map from L to M into a C^k-map. Moreover, we construct continuous linear right inverses for restriction operators between spaces of sections in vector bundles in many situations, and smooth local right inverses for restriction operators between manifolds of mappings. We also obtain smoothing results for sections in fibre bundles.
179 - Seppo Hassi , Sergii Kuzhel 2010
The paper is devoted to a development of the theory of self-adjoint operators in Krein spaces (J-self-adjoint operators) involving some additional properties arising from the existence of C-symmetries. The main attention is paid to the recent notion of stable C-symmetry for J-self-adjoint extensions of a symmetric operator S. The general results are specialized further by studying in detail the case where S has defect numbers <2,2>.
We investigate dynamical properties such as topological transitivity, (sequential) hypercyclicity, and chaos for backward shift operators associated to a Schauder basis on LF-spaces. As an application, we characterize these dynamical properties for weighted generalized backward shifts on Kothe coechelon sequence spaces $k_p((v^{(m)})_{minmathbb{N}})$ in terms of the defining sequence of weights $(v^{(m)})_{minmathbb{N}}$. We further discuss several examples and show that the annihilation operator from quantum mechanics is mixing, sequentially hypercyclic, chaotic, and topologically ergodic on $mathscr{S}(mathbb{R})$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا