Do you want to publish a course? Click here

A point source survey of M31 with the Spitzer Space Telescope

128   0   0.0 ( 0 )
 Added by Jeremy Mould
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the stellar population of M31 in a Spitzer Space Telescope survey utilizing IRAC and MIPS observations. Red supergiants are the brightest objects seen in the infrared; they are a prominent evolutionary phase. Due to their circumstellar envelopes, many of these radiate the bulk of their luminosity at IRAC wavelengths and do not stand out in the near infrared or optically. Going fainter, we see large numbers of luminous asymptotic giant branch (AGB) stars, many of which are known long period variables. Relative to M33, the AGB carbon star population of M31 appears sparse, but this needs to be spectroscopically confirmed.



rate research

Read More

66 - K. L. Luhman 2006
We present the results of a search for new members of the Taurus star-forming region using the Infrared Array Camera (IRAC) aboard the Spitzer Space Telescope}. With IRAC images of 29.7 deg^2 of Taurus at 3.6, 4.5, 5.8, and 8.0 um, we have identified sources with red mid-infrared colors indicative of disk-bearing objects and have obtained optical and infrared spectra of 23 of these candidate members. Through this work, we have discovered 13 new members of Taurus, two of which have spectral types later than M6 and thus are likely to be brown dwarfs according to the theoretical evolutionary models of Chabrier and Baraffe. This survey indicates that the previous census of Taurus has a completeness of ~80% for members with disks. The new members that we have found do not significantly modify the previously measured distributions of Taurus members as a function of position, mass, and extinction. For instance, we find no evidence for a population of highly reddened brown dwarfs (A_K~2) that has been missed by previous optical and near-infrared surveys, which suggests that brown dwarf disks are not significantly more flared than disks around stars. In addition to the new members, we also present IRAC photometry for the 149 previously known members that appear within this survey, which includes 27 objects later than M6.
62 - Dario Fadda 2004
(Abridged) We present R-band images covering more than 11 square degrees of sky obtained with the KPNO 4-m telescope in preparation for the Spitzer Space Telescope First Look Survey. The FLS was designed to characterize the mid-infrared sky at depths 2 orders of magnitude deeper than previous surveys. The extragalactic component is the first cosmological survey done with Spitzer. Two relatively large regions of the sky were observed: the main FLS extra galactic field (17h18m+59d30m) and ELAIS-N1 field (16h10m+54d30m). The overall quality of the images is high. The relative astrometric accuracy is better than 0.1 and the typical seeing is 1.1. Images are relatively deep since they reach a median 5-sigma depth limiting magnitude of R=25.5 (Vega). Catalogs have been extracted using SExtractor using thresholds in area and flux for which the number of false detections is below 1% at R=25. Only sources with S/N greater than 3 have been retained in the final catalogs. Comparing the galaxy number counts from our images with those of deeper R-band surveys, we estimate that our observations are 50% complete at R=24.5. These limits in depth are sufficient to identify a substantial fraction of the infrared sources which will be detected by Spitzer.
Using Infrared Array Camera (IRAC) images at 3.6, 4.5, 5.8, and 8 microns from the GLIMPSE Legacy science program on the Spitzer Space Telescope, we searched for infrared counterparts to the 95 known supernova remnants that are located within galactic longitudes 65>|l|>10 degrees and latitudes |b|<1 degree. Eighteen infrared counterparts were detected. Many other supernova remnants could have significant infrared emission but are in portions of the Milky Way too confused to allow separation from bright HII regions and pervasive mid-infrared emission from atomic and molecular clouds along the line of sight. Infrared emission from supernova remnants originates from synchrotron emission, shock-heated dust, atomic fine-structure lines, and molecular lines. The detected remnants are G11.2-0.3, Kes 69, G22.7-0.2, 3C 391, W 44, 3C 396, 3C 397, W 49B, G54.4-0.3, Kes 17, Kes 20A, RCW 103, G344.7-0.1, G346.6-0.2, CTB 37A, G348.5-0.0, and G349.7+0.2. The infrared colors suggest emission from molecular lines (9 remnants), fine-structure lines (3), and PAH (4), or a combination; some remnants feature multiple colors in different regions. None of the remnants are dominated by synchrotron radiation at mid-infrared wavelengths. The IRAC-detected sample emphasizes remnants interacting with relatively dense gas, for which most of the shock cooling occurs through molecular or ionic lines in the mid-infrared.
We present observations of L1014, a dense core in the Cygnus region previously thought to be starless, but data from the Spitzer Space Telescope shows the presence of an embedded source. We propose a model for this source that includes a cold core, heated by the interstellar radiation field, and a low-luminosity internal source. The low luminosity of the internal source suggests a substellar object. If L1014 is representative, other starless cores may turn out to harbor central sources.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا