No Arabic abstract
It was observed that the spatiotemporal chaos in lattices of coupled chaotic maps was suppressed to a spatiotemporal fixed point when some fraction of the regular coupling connections were replaced by random links. Here we investigate the effects of different kinds of parametric fluctuations on the robustness of this spatiotemporal fixed point regime. In particular we study the spatiotemporal dynamics of the network with noisy interaction parameters, namely fluctuating fraction of random links and fluctuating coupling strengths. We consider three types of fluctuations: (i) noisy in time, but homogeneous in space; (ii) noisy in space, but fixed in time; (iii) noisy in both space and time. We find that the effect of different kinds of parameteric noise on the dy- namics is quite distinct: quenched spatial fluctuations are the most detrimental to spatiotemporal regularity; spatiotemporal fluctuations yield phenomena similar to that observed when parameters are held constant at the mean-value; and interestingly, spatiotemporal regularity is most robust under spatially uniform temporal fluctuations, which in fact yields a larger fixed point range than that obtained under constant mean-value parameters.
Both uncorrelated (sequential) and correlated (nonsequential) processes contribute to the double ionization of the helium atom in strong laser pulses. The double ionization probability has a characteristic knee shape as a function of the intensity of the pulse. We investigate the phase-space dynamics of this system, specifically by finding the dynamical structures that regulate the ionization processes. The emerging picture complements the recollision scenario by clarifying the distinct roles played by the recolliding and core electrons. Our analysis leads to verifiable predictions of the intensities where qualitiative changes in ionization occur, leading to the hallmark knee shape.
We investigate the spatiotemporal dynamics of a lattice of coupled chaotic maps whose coupling connections are dynamically rewired to random sites with probability p, namely at any instance of time, with probability p a regular link is switched to a random one. In a range of weak coupling, where spatiotemporal chaos exists for regular lattices (i.e. for p = 0), we find that p > 0 yields synchronized periodic orbits. Further we observe that this regularity occurs over a window of p values, beyond which the basin of attraction of the synchronized cycle shrinks to zero. Thus we have evidence of an optimal range of randomness in coupling connections, where spatiotemporal regularity is efficiently obtained. This is in contrast to the commonly observed monotonic increase of synchronization with increasing p, as seen for instance, in the strong coupling regime of the very same system.
It is assumed that the holographic complexities such as the complexity-action (CA) and the complexity-volume (CV) conjecture are dual to complexity in field theory. However, because the definition of the complexity in field theory is still not complete, the confirmation of the holographic duality of the complexity is ambiguous. To improve this situation, we approach the problem from a different angle. We first identify minimal and genuin properties that the filed theory dual of the holographic complexity should satisfy without assuming anything from the circuit complexity or the information theory. Based on these properties, we propose a field theory formula dual to the holographic complexity. Our field theory formula implies that the complexity between certain states in two dimensional CFTs is given by the Liouville action, which is compatible with the path-integral complexity. It gives natural interpretations for both the CA and CV conjectures and identify what their reference states are. When applied to the thermo-field double states, it also gives consistent results with the holographic results in the CA conjecture: both the divergent term and finite term.
Computer science has grown rapidly since its inception in the 1950s and the pioneers in the field are celebrated annually by the A.M. Turing Award. In this paper, we attempt to shed light on the path to influential computer scientists by examining the characteristics of the 72 Turing Award laureates. To achieve this goal, we build a comprehensive dataset of the Turing Award laureates and analyze their characteristics, including their personal information, family background, academic background, and industry experience. The FP-Growth algorithm is used for frequent feature mining. Logistic regression plot, pie chart, word cloud and map are generated accordingly for each of the interesting features to uncover insights regarding personal factors that drive influential work in the field of computer science. In particular, we show that the Turing Award laureates are most commonly white, male, married, United States citizen, and received a PhD degree. Our results also show that the age at which the laureate won the award increases over the years; most of the Turing Award laureates did not major in computer science; birth order is strongly related to the winners success; and the number of citations is not as important as one would expect.
We present a direct measurement of the spatiotemporal coherence of parametric down-conversion in the range of negative group-velocity dispersion. In this case, the frequency-angular spectra are ring-shaped and temporal coherence is coupled to spatial coherence. Correspondingly, the lack of coherence due to spatial displacement can be compensated with the introduction of time delay. We show a simple technique, based on a modified Mach-Zehnder interferometer, which allowed us to measure time coherence and near-field space coherence simultaneously, with complete control of both variables. This technique will be also suitable for the measurement of second-order coherence, where the main applications are related to the two-photon spectroscopy.