No Arabic abstract
We discuss a specific cut-off effect which appears in applying the non-perturbative RI/MOM scheme to compute the renormalization constants. To illustrate the problem a Dirac operator satisfying the Ginsparg-Wilson relation is used, but the arguments are more general. We propose a simple modification of the method which gets rid of the corresponding discretization error. Applying this to full-QCD simulations done at a=0.13 fm with the Fixed Point action we find that the renormalization constants are strongly distorted by the artefacts discussed. We consider also the role of global gauge transformations, a freedom which still remains after the conventional gauge fixing procedure is applied.
High luminosity accelerators have greatly increased the interest in semi-exclusive and exclusive reactions involving nucleons. The relevant theoretical information is contained in the nucleon wavefunction and can be parametrized by moments of the nucleon distribution amplitudes, which in turn are linked to matrix elements of local three-quark operators. These can be calculated from first principles in lattice QCD. Defining an RI-MOM renormalization scheme, we renormalize three-quark operators corresponding to low moments non-perturbatively and take special care of the operator mixing. After performing a scheme matching and a conversion of the renormalization scale we quote our final results in the MSbar scheme at mu=2 GeV.
Recent developments in non-perturbative renormalization for lattice QCD are reviewed with a particular emphasis on RI/MOM scheme and its variants, RI/SMOM schemes. Summary of recent developments in Schroedinger functional scheme, as well as the summary of related topics are presented. Comparison of strong coupling constant and the strange quark mass from various methods are made.
We define a family of Schroedinger Functional renormalization schemes for the four-quark multiplicatively renormalizable operators of the $Delta F = 1$ and $Delta F = 2$ effective weak Hamiltonians. Using the lattice regularization with quenched Wilson quarks, we compute non-perturbatively the renormalization group running of these operators in the continuum limit in a large range of renormalization scales. Continuum limit extrapolations are well controlled thanks to the implementation of two fermionic actions (Wilson and Clover). The ratio of the renormalization group invariant operator to its renormalized counterpart at a low energy scale, as well as the renormalization constant at this scale, is obtained for all schemes.
Using the non-perturbative renormalization technique, we calculate the renormalization factors for quark bilinear operators made of overlap fermions on the lattice. The background gauge field is generated by the JLQCD and TWQCD collaborations including dynamical effects of two or 2+1 flavors of light quarks on a 16$^3times$32 or 16$^3times$48 lattice at lattice spacing around 0.1 fm. By reducing the quark mass close to the chiral limit, where the finite volume system enters the so-called $epsilon$-regime, the unwanted effect of spontaneous chiral symmetry breaking on the renormalization factors is suppressed. On the lattices in the conventional $p$-regime, this effect is precisely subtracted by separately calculating the contributions from the chiral condensate.
We present results for the renormalization of gauge invariant nonlocal fermion operators which contain a Wilson line, to one loop level in lattice perturbation theory. Our calculations have been performed for Wilson/clover fermions and a wide class of Symanzik improved gluon actions. The extended nature of such `long-link operators results in a nontrivial renormalization, including contributions which diverge linearly as well as logarithmically with the lattice spacing, along with additional finite factors. We present nonperturbative prescriptions to extract the linearly divergent contributions.