Do you want to publish a course? Click here

Direct Detection of the Close Companion of Polaris with the Hubble Space Telescope

138   0   0.0 ( 0 )
 Added by Sharon Toolan
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Polaris, the nearest and brightest classical Cepheid, is a single-lined spectroscopic binary with an orbital period of 30 years. Using the High Resolution Channel of the Advanced Camera for Surveys onboard the Hubble Space Telescope (HST) at a wavelength of ~2255AA, we have directly detected the faint companion at a separation of 0farcs17. A second HST observation 1.04 yr later confirms orbital motion in a retrograde direction. By combining our two measures with the spectroscopic orbit of Kamper and an analysis of the Hipparcos and FK5 proper motions by Wielen et al., we find a mass for Polaris Aa of 4.5^{+2.2}_{-1.4} M_odot--the first purely dynamical mass determined for any Cepheid. For the faint companion Polaris Ab we find a dynamical mass of 1.26^{+0.14}_{-0.07} M_odot, consistent with an inferred spectral type of F6 V and with the flux difference of 5.4 mag observed at 2255AA. The magnitude difference at the V band is estimated to be 7.2 mag. Continued HST observations will significantly reduce the mass errors, which are presently still too large to provide critical constraints on the roles of convective overshoot, mass loss, rotation, and opacities in the evolution of intermediate-mass stars. Our astrometry, combined with two centuries of archival measurements, also confirms that the well-known, more distant (18) visual companion, Polaris B, has a nearly common proper motion with that of the Aa,Ab pair. This is consistent with orbital motion in a long-period bound system. The ultraviolet brightness of Polaris B is in accordance with its known F3 V spectral type if it has the same distance as Polaris Aa,Ab.



rate research

Read More

As part of a program to determine dynamical masses of Cepheids, we have imaged the nearest and brightest Cepheid, Polaris, with the Hubble Space Telescope Wide Field Planetary Camera 2 and Wide Field Camera 3. Observations were obtained at three epochs between 2007 and 2014. In these images, as in HST frames obtained in 2005 and 2006, which we discussed in a 2008 paper, we resolve the close companion Polaris Ab from the Cepheid Polaris Aa. Because of the small separation and large magnitude difference between Polaris Aa and Ab, we used PSF deconvolution techniques to carry out astrometry of the binary. Based on these new measurements, we have updated the elements for the 29.59 yr orbit. Adopting the distance to the system from the recent Gaia Data Release 2, we find a dynamical mass for the Cepheid of 3.45 +/- 0.75 Msun, although this is preliminary, and will be improved by CHARA measurements covering periastron. As is the case for the recently determined dynamical mass for the Cepheid V1334 Cyg, the mass of Polaris is significantly lower than the evolutionary mass predicted by fitting to evolutionary tracks in the HR diagram. We discuss several questions and implications raised by these measurements, including the pulsation mode, which instability-strip crossing the stars are in, and possible complications such as rotation, mass loss, and binary mergers. The distant third star in the system, Polaris B, appears to be older than the Cepheid, based on isochrone fitting. This may indicate that the Cepheid Polaris is relatively old and is the result of a binary merger, rather than being a young single star.
We report the detection of dark energy near the Milky Way made with precision observations of the local Hubble flow of expansion. We estimate the local density of dark energy and find that it is near, if not exactly equal to, the global dark energy density. The result is independent of, compatible with, and complementary to the horizon-scale observations in which dark energy was first discovered. Together with the cosmological concordance data, our result forms direct observational evidence for the Einstein antigravity as a universal phenomenon -- in the same sense as the Newtonian universal gravity.
The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84 yr period by the faint DQZ white dwarf Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurements back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 +/- 0.012 Msun and 0.592 +/- 0.006 Msun for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon As age is ~2.7 Gyr. Procyon Bs location in the H-R diagram is in excellent agreement with theoretical cooling tracks for white dwarfs of its dynamical mass. Its position in the mass-radius plane is also consistent with theory, assuming a carbon-oxygen core and a helium-dominated atmosphere. Its progenitors mass was 1.9-2.2 Msun, depending on its amount of core overshoot. Several astrophysical puzzles remain. In the progenitor system, the stars at periastron were separated by only ~5 AU, which might have led to tidal interactions and even mass transfer; yet there is no direct evidence that these have occurred. Moreover the orbital eccentricity has remained high (~0.40). The mass of Procyon B is somewhat lower than anticipated from the initial-to-final-mass relation seen in open clusters. The presence of heavy elements in its atmosphere requires ongoing accretion, but the place of origin is uncertain.
The wavelength-dependence of the extinction of Type Ia SN2014J in the nearby galaxy M82 has been measured using UV to near-IR photometry obtained with the Hubble Space Telescope, the Nordic Optical Telescope, and the Mount Abu Infrared Telescope. This is the first time that the reddening of a SN Ia is characterized over the full wavelength range of $0.2$-$2$ microns. A total-to-selective extinction, $R_Vgeq3.1$, is ruled out with high significance. The best fit at maximum using a Galactic type extinction law yields $R_V = 1.4pm0.1$. The observed reddening of SN2014J is also compatible with a power-law extinction, $A_{lambda}/A_V = left( {lambda}/ {lambda_V} right)^{p}$ as expected from multiple scattering of light, with $p=-2.1pm0.1$. After correction for differences in reddening, SN2014J appears to be very similar to SN2011fe over the 14 broad-band filter light curves used in our study.
Observations with the Hubble Space Telescope (HST), conducted since 1990, now offer an unprecedented glimpse into fast astrophysical shocks in the young remnant of supernova 1987A. Comparing observations taken in 2010 using the refurbished instruments on HST with data taken in 2004, just before the Space Telescope Imaging Spectrograph failed, we find that the Ly-a and H-a lines from shock emission continue to brighten, while their maximum velocities continue to decrease. We observe broad blueshifted Ly-a, which we attribute to resonant scattering of photons emitted from hotspots on the equatorial ring. We also detect NV~lambdalambda 1239,1243 A line emission, but only to the red of Ly-A. The profiles of the NV lines differ markedly from that of H-a, suggesting that the N^{4+} ions are scattered and accelerated by turbulent electromagnetic fields that isotropize the ions in the collisionless shock.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا