Novel Regime of Operation for Superconducting Quantum Interference Filters


Abstract in English

A new operating regime of the Superconducting Quantum Interference Filter (SQIF) is investigated. The voltage to magnetic field response function, V(H), is determined by a Fraunhofer dependence of the critical current and magnetic flux focusing effect in Josephson junctions (F-mode). For SQIF-arrays made of high-Tc superconducting bicrystal Josephson junctions the F-mode plays a predominant role in the voltage-field response V(H). The relatively large superconducting loops of the SQIF are used for inductive coupling to the external input circuit. It is shown that the output noise of a SQIF-array measured with a cooled amplifier in the 1-2 GHz range is determined by the slope of the V(H) characteristic. Power gain and saturation power were evaluated using low frequency SQIF parameters. Finally, we consider the influence of the spread in the parameters of Josephson junctions in the SQIF-array on the V(H) characteristic of the whole structure.

Download