Suppose that a target function is monotonic, namely, weakly increasing, and an available original estimate of this target function is not weakly increasing. Rearrangements, univariate and multivariate, transform the original estimate to a monotonic estimate that always lies closer in common metrics to the target function. Furthermore, suppose an original simultaneous confidence interval, which covers the target function with probability at least $1-alpha$, is defined by an upper and lower end-point functions that are not weakly increasing. Then the rearranged confidence interval, defined by the rearranged upper and lower end-point functions, is shorter in length in common norms than the original interval and also covers the target function with probability at least $1-alpha$. We demonstrate the utility of the improved point and interval estimates with an age-height growth chart example.