Do you want to publish a course? Click here

Evolution of the N=50 shell gap energy towards $^{78}$Ni

127   0   0.0 ( 0 )
 Added by Jani Hakala
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

Atomic masses of the neutron-rich isotopes $^{76-80}$Zn, $^{78-83}$Ga, $^{80-85}Ge, $^{81-87}$As and $^{84-89}$Se have been measured with high precision using the Penning trap mass spectrometer JYFLTRAP at the IGISOL facility. The masses of $^{82,83}$Ga, $^{83-85}$Ge, $^{84-87}$As and $^{89}$Se were measured for the first time. These new data represent a major improvement in the knowledge of the masses in this neutron-rich region. Two-neutron separation energies provide evidence for the reduction of the N=50 shell gap energy towards germanium Z=32 and a subsequent increase at gallium (Z=31). The data are compared with a number of theoretical models. An indication of the persistent rigidity of the shell gap towards nickel (Z=28) is obtained.



rate research

Read More

268 - M.-G. Porquet , O. Sorlin 2012
The evolution of the N=50 gap is analyzed as a function of the occupation of the proton f5/2 and p3/2 orbits. It is based on experimental atomic masses, using three different methods of one or two-neutron separation energies of ground or isomeric states. We show that the effect of correlations, which is maximized at Z=32 could be misleading with respect to the determination of the size of the shell gap, especially when using the method with two-neutron separation energies. From the methods that are the least perturbed by correlations, we estimate the N=50 spherical shell gap in 78Ni. Whether 78Ni would be a rigid spherical or deformed nucleus is discussed in comparison with other nuclei in which similar nucleon-nucleon forces are at play.
108 - David Verney 2007
Excited levels were attributed to $^{81}_{31}$Ga$_{50}$ for the first time which were fed in the $beta$-decay of its mother nucleus $^{81}$Zn produced in the fission of $^{nat}$U using the ISOL technique. We show that the structure of this nucleus is consistent with that of the less exotic proton-deficient N=50 isotones within the assumption of strong proton Z=28 and neutron N=50 effective shell effects.
117 - D. Verney 2006
New levels were attributed to $^{81}_{31}$Ga$_{50}$ and $^{83}_{32}$Ge$_{51}$ which were fed by the $beta$-decay of their respective mother nuclei $^{81}_{30}$Zn$_{51}$ and $^{83}_{31}$Ga$_{52}$ produced by fission at the PARRNe ISOL set-up installed at the Tandem accelerator of the Institut de Physique Nucleaire, Orsay. We show that the low energy structure of $^{81}_{31}$Ga$_{50}$ and $^{83}_{32}$Ge$_{51}$ can easily be explained within the natural hypothesis of a strong energy gap at N=50 and a doubly-magic character for $^{78}$Ni.
79 - Kenichi Yoshida 2019
$beta$-decay rates play a decisive role in understanding the nucleosynthesis of heavy elements and are governed by microscopic nuclear-structure information. A sudden shortening of the half-lives of Ni isotopes beyond $N=50$ was observed at the RIKEN-RIBF. This is considered due to the persistence of the neutron magic number $N=50$ in the very neutron-rich Ni isotopes. By systematically studying the $beta$-decay rates and strength distributions in the neutron-rich Ni isotopes around $N=50$, I try to understand the microscopic mechanism for the observed sudden shortening of the half-lives. The $beta$-strength distributions in the neutron-rich nuclei are described in the framework of nuclear density-functional theory. I employ the Skyrme energy-density functionals (EDF) in the Hartree-Fock-Bogoliubov calculation for the ground states and in the proton-neutron Quasiparticle Random-Phase Approximation (pnQRPA) for the transitions. Not only the allowed but the first-forbidden (FF) transitions are considered. The experimentally observed sudden shortening of the half-lives beyond $N=50$ is reproduced well by the calculations employing the Skyrme SkM* and SLy4 functionals. The sudden shortening of the half-lives is due to the shell gap at $N=50$ and cooperatively with the high-energy transitions to the low-lying $0^-$ and $1^-$ states in the daughter nuclei. The onset of FF transitions pointed out around $N=82$ and 126 is preserved in the lower-mass nuclei around $N=50$. This study suggests that needed is a microscopic calculation where the shell structure in neutron-rich nuclei and its associated effects on the FF transitions are selfconsistenly taken into account for predicting $beta$-decay rates of exotic nuclei in unknown region.
Nuclear spins and precise values of the magnetic dipole and electric quadrupole moments of the ground-states of neutron-rich $^{76-78}$Cu isotopes were measured using the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at ISOLDE, CERN. The nuclear moments of the less exotic $^{73,75}$Cu isotopes were re-measured with similar precision, yielding values that are consistent with earlier measurements. The moments of the odd-odd isotopes, and $^{78}_{29}$Cu ($N=49$) in particular, are used to investigate excitations of the assumed doubly-magic $^{78}$Ni core through comparisons with large-scale shell-model calculations. Despite the narrowing of the $Z=28$ shell gap between $Nsim45$ and $N=50$, the magicity of $Z=28$ and $N=50$ is restored towards $^{78}$Ni. This is due to weakened dynamical correlations, as clearly probed by the present moment measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا