Do you want to publish a course? Click here

A Spitzer view of protoplanetary disks in the gamma Velorum cluster

334   0   0.0 ( 0 )
 Added by Jesus Hernandez PhD
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present new Spitzer Space Telescope observations of stars in the young ~5 Myr gamma Velorum stellar cluster. Combining optical and 2MASS photometry, we have selected 579 stars as candidate members of the cluster. With the addition of the Spitzer mid-infrared data, we have identified 5 debris disks around A-type stars, and 5-6 debris disks around solar-type stars, indicating that the strong radiation field in the cluster does not completely suppress the production of planetesimals in the disks of cluster members. However, we find some evidence that the frequency of circumstellar primordial disks is lower, and the IR flux excesses are smaller than for disks around stellar populations with similar ages. This could be evidence for a relatively fast dissipation of circumstellar dust by the strong radiation field from the highest mass star(s) in the cluster. Another possibility is that gamma Velorum stellar cluster is slightly older than reported ages and the the low frequency of primordial disks reflects the fast disk dissipation observed at ~5 Myr.



rate research

Read More

We present new Herschel PACS observations of 32 T Tauri stars in the young ($sim$3 Myr) $sigma$ Ori cluster. Most of our objects are K & M stars with large excesses at 24 $mu$m. We used irradiated accretion disk models of DAlessio et al. (2006) to compare their spectral energy distributions with our observational data. We arrive at the following six conclusions. (i) The observed disks are consistent with irradiated accretion disks systems. (ii) Most of our objects (60%) can be explained by significant dust depletion from the upper disk layers. (iii) Similarly, 61% of our objects can be modeled with large disk sizes ($rm R_{rm d} geq$ 100 AU). (iv) The masses of our disks range between 0.03 to 39 $rm M_{Jup}$, where 35% of our objects have disk masses lower than 1 Jupiter. Although these are lower limits, high mass ($>$ 0.05 M$_{odot}$) disks, which are present e.g, in Taurus, are missing. (v) By assuming a uniform distribution of objects around the brightest stars at the center of the cluster, we found that 80% of our disks are exposed to external FUV radiation of $300 leq G_{0} leq 1000$, which can be strong enough to photoevaporate the outer edges of the closer disks. (vi) Within 0.6 pc from $sigma$ Ori we found forbidden emission lines of [NII] in the spectrum of one of our large disk (SO662), but no emission in any of our small ones. This suggests that this object may be an example of a photoevaporating disk.
67 - E. Franciosini 2018
Gaia-ESO Survey observations of the young Gamma Velorum cluster led to the discovery of two kinematically-distinct populations, Gamma Vel A and B, respectively, with population B extended over several square degrees in the Vela OB2 association. Using the Gaia DR2 data for a sample of high-probability cluster members, we find that the two populations differ not only kinematically, but are also located at different distances along the line of sight, with the main cluster Gamma Vel A being closer. A combined fit of the two populations yields $varpi_A = 2.895 pm 0.008$ mas and $varpi_B = 2.608 pm 0.017$ mas, with intrinsic dispersions of $0.038 pm 0.011$ mas and $0.091 pm 0.016$ mas, respectively. This translates into distances of $345.4^{+1.0+12.4}_{-1.0-11.5},$ pc and $383.4^{+2.5+15.3}_{-2.5-14.2},$ pc, respectively, showing that Gamma Vel A is closer than Gamma Vel B by $sim$38 pc. We find that the two clusters are nearly coeval, and that Gamma Vel B is expanding. We suggest that Gamma Vel A and B are two independent clusters located along the same line of sight.
80 - Min-Kai Lin 2017
Small solids embedded in gaseous protoplanetary disks are subject to strong dust-gas friction. Consequently, tightly-coupled dust particles almost follow the gas flow. This near conservation of dust-to-gas ratio along streamlines is analogous to the near conservation of entropy along flows of (dust-free) gas with weak heating and cooling. We develop this thermodynamic analogy into a framework to study dusty gas dynamics in protoplanetary disks. We show that an isothermal dusty gas behaves like an adiabatic pure gas; and that finite dust-gas coupling may be regarded as an effective heating/cooling. We exploit this correspondence to deduce that 1) perfectly coupled, thin dust layers cannot cause axisymmetric instabilities; 2) radial dust edges are unstable if the dust is vertically well-mixed; 3) the streaming instability necessarily involves a gas pressure response that lags behind dust density; 4) dust-loading introduces buoyancy forces that generally stabilizes the vertical shear instability associated with global radial temperature gradients. We also discuss dusty analogs of other hydrodynamic processes (e.g. Rossby wave instability, convective overstability, and zombie vortices), and how to simulate dusty protoplanetary disks with minor tweaks to existing codes for pure gas dynamics.
459 - O. Dionatos 2019
Consistent modeling of protoplanetary disks requires the simultaneous solution of both continuum and line radiative transfer, heating/cooling balance between dust and gas and, of course, chemistry. Such models depend on panchromatic observations that can provide a complete description of the physical and chemical properties and energy balance of protoplanetary systems. Along these lines we present a homogeneous, panchromatic collection of data on a sample of 85 T Tauri and Herbig Ae objects for which data cover a range from X-rays to centimeter wavelengths. Datasets consist of photometric measurements, spectra, along with results from the data analysis such as line fluxes from atomic and molecular transitions. Additional properties resulting from modeling of the sources such as disc mass and shape parameters. dust size and PAH properties are also provided for completeness. Targets were selected based on their properties data availability. Data from more than 50 different telescopes and facilities were retrieved and combined in homogeneous datasets directly from public data archives or after being extracted from more than 100 published articles. X-ray data for a subset of 56 sources represent an exception as they were reduced from scratch and are presented here for the first time. Compiled datasets along with a subset of continuum and emission-line models are stored in a dedicated database and distributed through a publicly accessible online system. All datasets contain metadata descriptors that allow to backtrack them to their original resources. The graphical user interface of the online system allows the user to visually inspect individual objects but also compare between datasets and models. It also offers to the user the possibility to download any of the stored data and metadata for further processing.
Most stars form in a cluster environment. These stars are initially surrounded by discs from which potentially planetary systems form. Of all cluster environments starburst clusters are probably the most hostile for planetary systems in our Galaxy. The intense stellar radiation and extreme density favour rapid destruction of circumstellar discs via photoevaporation and stellar encounters. Evolving a virialized model of the Arches cluster in the Galactic tidal field we investigate the effect of stellar encounters on circumstellar discs in a prototypical starburst cluster. Despite its proximity to the deep gravitational potential of the Galactic centre only a moderate fraction of members escapes to form an extended pair of tidal tails. Our simulations show that encounters destroy one third of the circumstellar discs in the cluster core within the first 2.5 Myr of evolution, preferentially affecting the least and most massive stars. A small fraction of these events causes rapid ejection and the formation of a weaker second pair of tidal tails that is overpopulated by disc-poor stars. Two predictions arise from our study: (i) If not destroyed by photoevaporation protoplanetary discs of massive late B- and early O-type stars represent the most likely hosts of planet formation in starburst clusters. (ii) Multi-epoch K- and L-band photometry of the Arches cluster would provide the kinematically selected membership sample required to detect the additional pair of disc-poor tidal tails.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا