No Arabic abstract
We consider long and narrow spin valves composed of a first magnetic layer with a single domain wall (DW), a normal metal spacer and a second magnetic layer that is a planar or a perpendicular polarizer. For these structures, we study numerically DW dynamics taking into account the spin torques due to the perpendicular spin currents. We obtain high DW velocities: 50 m/s for planar polarizer and 640 m/s for perpendicular polarizer for J = 5*10^6 A/cm^2. These values are much larger than those predicted and observed for DW motion due to the in-plane spin currents. The ratio of the magnitudes of the torques, which generate the DW motion in the respective cases, is responsible for these large differences.
We report the observation of the antisymmetric magnetoresistance (MR) in perpendicular magnetized CoTb films with inhomogeneous magnetization distribution driven by gradient magnetic field. By synchronously charactering the domain pattern evolution during transport measurements, we demonstrate that the nonequilibrium currents in the vicinity of tilting domain walls give rise to such anomalous MR. Moreover, theoretical calculation and analysis reveal that the geometry factor of the multidomain texture plays a dominant role in generating the nonequilibrium current. The explicitly established interplay between the anomalous transport behaviors and the particular domain wall geometry is essential to deepening understanding of the antisymmetric MR, and pave a new way for designing novel domain wall electronic devices.
Chiral magnetic materials provide a number of challenging issues such as the highly efficient domain wall (DW) and skyrmion motions driven by electric current, as of the operation principles of emerging spintronic devices. The DWs in the chiral materials exhibit asymmetric DW speed variation under application of in plane magnetic field. Here, we show that such DW speed asymmetry causes the DW tilting during the motion along wire structure. It has been known that the DW tilting can be induced by the direct Zeeman interaction of the DW magnetization under application of in plane magnetic field. However, our experimental observations manifests that there exists another dominant process with the DW speed asymmetry caused by either the Dzyaloshinskii Moriya interaction (DMI) or the chirality dependent DW speed variation. A theoretical model based on the DW geometry reveals that the DW tilting is initiated by the DW pinning at wire edges and then, the direction of the DW tilting is determined by the DW speed asymmetry, as confirmed by a numerical simulation. The present observation reveals the decisive role of the DW pinning with the DW speed asymmetry, which determines the DW geometry and consequently, the dynamics.
Deterministic control of domain walls orthogonal to the direction of current flow is demonstrated by exploiting spin orbit torque in a perpendicularly polarized Ta/CoFeB/MgO multilayer in presence of an in-plane magnetic field. Notably, such orthogonal motion with respect to current flow is not possible from traditional spin transfer torque driven domain wall propagation even in presence of an external magnetic field. Reversing the polarity of either the current flow or the in-plane field is found to reverse the direction of the domain wall motion. From these measurements, which are unaffected by any conventional spin transfer torque by symmetry, we estimate the spin orbit torque efficiency of Ta to be 0.08.
Spin-orbit torques (SOT) allow the electrical control of magnetic states. Current-induced SOT switching of the perpendicular magnetization is of particular technological importance. The SOT consists of damping-like and field-like torques so that the efficient SOT switching requires to understand combined effects of the two torque-components. Previous quasi-static measurements have reported an increased switching probability with the width of current pulses, as predicted with considering the damping-like torque only. Here we report a decreased switching probability at longer pulse-widths, based on time-resolved measurements. Micromagnetic analysis reveals that this anomalous SOT switching results from domain wall reflections at sample edges. The domain wall reflection is found to strongly depend on the field-like torque and its relative sign to the damping-like torque. Our result demonstrates a key role of the field-like torque in the deterministic SOT switching and notifies the importance of sign correlation of the two torque-components, which may shed light on the SOT switching mechanism.
Manipulation of magnetic domain walls via a helicity-independent laser pulse has recently been experimentally demonstrated and various physical mechanisms leading to domain wall dynamics have been discussed. Spin-dependent superdiffusive transport of hot electrons has been identified as one of the possible ways how to affect a magnetic domain wall. Here, we develop a model based on superdiffusive spin-dependent transport to study the laser-induced transport of hot electrons through a smooth magnetic domain wall. We show that the spin transfer between neighboring domains can enhance ultrafast demagnetization in the domain wall. More importantly, our calculations reveal that when the laser pulse is properly focused on to the vicinity of the domain wall, it can excite sufficiently strong spin currents to generate a spin-transfer torque that can rapidly move the magnetic domain wall by several nanometers in several hundreds of femtoseconds, leading to a huge nonequilibrium domain wall velocity.