Do you want to publish a course? Click here

Galaxy rotation curves: the effect of j x B force

551   0   0.0 ( 0 )
 Added by David Tsiklauri
 Publication date 2011
  fields Physics
and research's language is English
 Authors D. Tsiklauri




Ask ChatGPT about the research

Using the Galaxy as an example, we study the effect of j x B force on the rotational curves of gas and plasma in galaxies. Acceptable model for the galactic magnetic field and plausible physical parameters are used to fit the flat rotational curve for gas and plasma based on the observed baryonic (visible) matter distribution and j x B force term in the static MHD equation of motion. We also study the effects of varied strength of the magnetic field, its pitch angle and length scale on the rotational curves. We show that j x B force does not play an important role on the plasma dynamics in the intermediate range of distances 6-12 kpc from the centre, whilst the effect is sizable for larger r (r > 15 kpc), where it is the most crucial.

rate research

Read More

We examine the circular velocity profiles of galaxies in {Lambda}CDM cosmological hydrodynamical simulations from the EAGLE and LOCAL GROUPS projects and compare them with a compilation of observed rotation curves of galaxies spanning a wide range in mass. The shape of the circular velocity profiles of simulated galaxies varies systematically as a function of galaxy mass, but shows remarkably little variation at fixed maximum circular velocity. This is especially true for low-mass dark matter-dominated systems, reflecting the expected similarity of the underlying cold dark matter haloes. This is at odds with observed dwarf galaxies, which show a large diversity of rotation curve shapes, even at fixed maximum rotation speed. Some dwarfs have rotation curves that agree well with simulations, others do not. The latter are systems where the inferred mass enclosed in the inner regions is much lower than expected for cold dark matter haloes and include many galaxies where previous work claims the presence of a constant density core. The cusp vs core issue is thus better characterized as an inner mass deficit problem than as a density slope mismatch. For several galaxies the magnitude of this inner mass deficit is well in excess of that reported in recent simulations where cores result from baryon-induced fluctuations in the gravitational potential. We conclude that one or more of the following statements must be true: (i) the dark matter is more complex than envisaged by any current model; (ii) current simulations fail to reproduce the effects of baryons on the inner regions of dwarf galaxies; and/or (iii) the mass profiles of inner mass deficit galaxies inferred from kinematic data are incorrect.
We use mock interferometric HI measurements and a conventional tilted-ring modelling procedure to estimate circular velocity curves of dwarf galaxy discs from the APOSTLE suite of {Lambda}CDM cosmological hydrodynamical simulations. The modelling yields a large diversity of rotation curves for an individual galaxy at fixed inclination, depending on the line-of-sight orientation. The diversity is driven by non-circular motions in the gas; in particular, by strong bisymmetric fluctuations in the azimuthal velocities that the tilted-ring model is ill-suited to account for and that are difficult to detect in model residuals. Large misestimates of the circular velocity arise when the kinematic major axis coincides with the extrema of the fluctuation pattern, in some cases mimicking the presence of kiloparsec-scale density cores, when none are actually present. The thickness of APOSTLE discs compounds this effect: more slowly-rotating extra-planar gas systematically reduces the average line-of-sight speeds. The recovered rotation curves thus tend to underestimate the true circular velocity of APOSTLE galaxies in the inner regions. Non-circular motions provide an appealing explanation for the large apparent cores observed in galaxies such as DDO 47 and DDO 87, where the model residuals suggest that such motions might have affected estimates of the inner circular velocities. Although residuals from tilted ring models in the simulations appear larger than in observed galaxies, our results suggest that non-circular motions should be carefully taken into account when considering the evidence for dark matter cores in individual galaxies.
The application of Bayesian techniques to astronomical data is generally non-trivial because the fitting parameters can be strongly degenerated and the formal uncertainties are themselves uncertain. An example is provided by the contradictory claims over the presence or absence of a universal acceleration scale (g$_dagger$) in galaxies based on Bayesian fits to rotation curves. To illustrate the situation, we present an analysis in which the Newtonian gravitational constant $G_N$ is allowed to vary from galaxy to galaxy when fitting rotation curves from the SPARC database, in analogy to $g_{dagger}$ in the recently debated Bayesian analyses. When imposing flat priors on $G_N$, we obtain a wide distribution of $G_N$ which, taken at face value, would rule out $G_N$ as a universal constant with high statistical confidence. However, imposing an empirically motivated log-normal prior returns a virtually constant $G_N$ with no sacrifice in fit quality. This implies that the inference of a variable $G_N$ (or g$_{dagger}$) is the result of the combined effect of parameter degeneracies and unavoidable uncertainties in the error model. When these effects are taken into account, the SPARC data are consistent with a constant $G_{rm N}$ (and constant $g_dagger$).
X-ray spectra of galaxy clusters are dominated by the thermal emission from the hot intracluster medium. In some cases, besides the thermal component, spectral models require additional components associated, e.g., with resonant scattering and charge exchange. The latter produces mostly underluminous fine spectral features. Detection of the extra components therefore requires high spectral resolution. The upcoming X-ray missions will provide such high resolution, and will allow spectroscopic diagnostics of clusters beyond the current simple thermal modeling. A representative science case is resonant scattering, which produces spectral distortions of the emission lines from the dominant thermal component. Accounting for the resonant scattering is essential for accurate abundance and gas motion measurements of the ICM. The high resolution spectroscopy might also reveal/corroborate a number of new spectral components, including the excitation by non-thermal electrons, the deviation from ionization equilibrium, and charge exchange from surface of cold gas clouds in clusters. Apart from detecting new features, future high resolution spectroscopy will also enable a much better measurement of the thermal component. Accurate atomic database and appropriate modeling of the thermal spectrum are therefore needed for interpreting the data.
ClusterPyXT is a new software pipeline to generate spectral temperature, X-ray surface brightness, pressure, and density maps from X-ray observations of galaxy clusters. These data products help elucidate the physics of processes occurring within clusters of galaxies, including turbulence, shock fronts, nonthermal phenomena, and the overall dynamics of cluster mergers. ClusterPyXT automates the creation of these data products with minimal user interaction, and allows for rapid analyses of archival data with user defined parameters and the ability to straightforwardly incorporate additional observations. In this paper, we describe in detail the use of this code and release it as an open source Python project on GitHub.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا