Do you want to publish a course? Click here

Supercurrent transferring through c-axis cuprate Josephson junctions with thick normal-metal-bridge

477   0   0.0 ( 0 )
 Added by Xin-Zhong Yan
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

With simple but exactly solvable model, we investigate the supercurrent transferring through the c-axis cuprate superconductor-normal metal-superconductor junctions with the clean normal metal much thicker than its coherence length. It is shown that the supercurrent as a function of thickness of the normal metal decreases much slower than the exponential decaying expected by the proximity effect. The present result may account for the giant proximity effect observed in the c-axis cuprate SNS junctions.



rate research

Read More

The lengthscale over which supercurrent from conventional BCS, $s$-wave, superconductors ($S$) can penetrate an adjacent ferromagnetic ($F$) layer depends on the ability to convert singlet Cooper pairs into triplet Cooper pairs. Spin aligned triplet Cooper pairs are not dephased by the ferromagnetic exchange interaction, and can thus penetrate an $F$ layer over much longer distances than singlet Cooper pairs. These triplet Cooper pairs carry a dissipationless spin current and are the fundamental building block for the fledgling field of superspintronics. Singlet-triplet conversion by inhomogeneous magnetism is well established. Here, we describe an attempt to use spin orbit coupling as a new mechanism to mediate singlet-triplet conversion in $S-F-S$ Josephson junctions. We report that the addition of thin Pt spin-orbit coupling layers in our Josephson junctions significantly increases supercurrent transmission, however the decay length of the supercurrent is not found to increase. We attribute the increased supercurrent transmission to Pt acting as a buffer layer to improve the growth of the Co $F$ layer.
It has been suggested by theoretical works that equal spin-triplet Cooper pairs can be generated in Josephson junctions containing both a ferromagnet and a source of spin-orbit coupling. Our recent experimental work suggested that spin-triplet Cooper pairs were not generated by a Pt spin-orbit coupling layer when the ferromagnetic weak link had entirely in-plane anisotropy (N. Satchell and N.O. Birge, Phys. Rev. B 97, 214509 (2018)). Here, we revisit the experiment using Pt again as a source for spin-orbit coupling and a [Co(0.4 nm)/Ni(0.4 nm)]$_{times8}$/Co(0.4 nm) ferromagnetic weak link with both in-plane and out-of-plane magnetization components (canted magnetization). The canted magnetization more closely matches theoretical predictions than our previous experimental work. Our results suggest that there is no supercurrent contribution in our junctions from equal spin-triplets. In addition, this work includes the first systematic study of supercurrent dependence on Cu interlayer thickness, a common additional layer used to buffer the growth of the ferromagnet and which for Co may significantly improve the growth morphology. We report that the supercurrent in the [Co(0.4 nm)/Ni(0.4 nm)]$_{times8}$/Co(0.4 nm) ferromagnetic weak links can be enhanced by over two orders of magnitude by tuning the Cu interlayer thickness. This result has important application in superconducting spintronics, where large critical currents are desirable for devices.
270 - A. Bille , R. A. Klemm , 2000
We calculate the critical current density $J^J_c$ for c-axis Josephson tunneling between identical high temperature superconductors twisted an angle $phi_0$ about the c-axis. We model the tunneling matrix element squared as a Gaussian in the change of wavevector q parallel to the junction, $<|t({bf q})|^2>proptoexp(-{bf q}^2a^2/2pi^2sigma^2)$. The $J^J_c(phi_0)/J^J_c(0)$ obtained for the s- and extended-s-wave order parameters (OPs) are consistent with the Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ data of Li {it et al.}, but only for strongly incoherent tunneling, $sigma^2ge0.25$. A $d_{x^2-y^2}$-wave OP is always inconsistent with the data. In addition, we show that the apparent conventional sum rule violation observed by Basov et al. might be understandable in terms of incoherent c-axis tunneling, provided that the OP is not $d_{x^2-y^2}$-wave.
A nonmonotonic dependence of the critical Josephson supercurrent on the injection current through a normal metal/ferromagnet weak link from a single domain ferromagnetic strip has been observed experimentally in nanofabricated planar crosslike S-N/F-S Josephson structures. This behavior is explained by 0-pi and pi-0 transitions, which can be caused by the suppression and Zeeman splitting of the induced superconductivity due to interaction between N and F layers, and the injection of spin-polarized current into the weak link. A model considering both effects has been developed. It shows the qualitative agreement between the experimental results and the theoretical model in terms of spectral supercurrent-carrying density of states of S-N/F-S structure and the spin-dependent double-step nonequilibrium quasiparticle distribution.
Using the Usadel equation approach, we provide a compact formalism to calculate the critical current density of 21 different types of ferromagnetic (F) Josephson junctions containing insulating (I) and normal metal (N) layers in the weak link regions. In particular, we obtain that even a thin additional N layer may shift the 0-$pi$ transitions to larger or smaller values of the thickness $d_F$ of the ferromagnet, depending on its conducting properties. For certain values of $d_F$, a 0-$pi$ transition can even be achieved by changing only the N layer thickness. We use our model to fit experimental data of SIFS and SINFS tunnel junctions, where S is a superconducting electrode.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا