Do you want to publish a course? Click here

On the reliability of mass-loss-rate estimates for AGB stars

98   0   0.0 ( 0 )
 Added by Sofia Ramstedt
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the recent literature there has been some doubt as to the reliability of CO multi-transitional line observations as a mass-loss-rate estimator for AGB stars. Mass-loss rates for 10 intermediate- to high-mass-loss-rate AGB stars are derived using a detailed non-LTE, non-local radiative transfer code based on the Monte-Carlo method to model the CO radio line intensities. The circumstellar envelopes are assumed to be spherically symmetric and formed by constant mass-loss rates. The energy balance is solved self-consistently and the effects of dust on the radiation field and thermal balance are included. An independent estimate of the mass-loss rate is also obtained from the combination of dust radiative transfer modelling with a dynamical model of the gas and dust particles. We find that the CO radio line intensities and shapes are successfully reproduced for the majority of our objects assuming a constant mass-loss rate. Moreover, the CO line intensities are only weakly dependent on the adopted micro-turbulent velocity, in contrast to recent claims in the literature. The two methods used in the present work to derive mass-loss-rates are consistent within a factor of ~3 for intermediate- to high-mass-loss-rate objects, indicating that this is a lower limit to the uncertainty in present mass-loss-rate estimates. We find a tentative trend with chemistry. Mass-loss rates from the dust/dynamical model are systematically higher than those from the CO model for the carbon stars and vice versa for the M-type stars. This could be ascribed to a discrepancy in the adopted CO/H_2-abundance ratio, but we caution that the sample is small and systematic errors cannot be excluded.



rate research

Read More

As part of a reanalysis of Galactic Asymptotic Giant Branch stars (hereafter AGB stars) at infrared wavelengths, we discuss here two samples (the first of carbon-rich stars, the second of S stars) for which photometry in the near- and mid-IR and distance estimates are available. Whenever possible we searched also for mass-loss rates. The observed spectral energy distributions extended in all cases up to 20 $mu$m and for the best-observed sources up to 45 $mu$m. The wide wavelength coverage allows us to obtain reliable bolometric corrections, and hence bolometric magnitudes. We show that mid-IR fluxes are crucial for estimating bolometric magnitudes for stars with dusty envelopes and that the so-called luminosity problem of C stars (i.e. the suggestion that they are less luminous than predicted by models) does not appear to exist.
190 - Mikako Matsuura 2011
It is important to properly describe the mass-loss rate of AGB stars, in order to understand their evolution from the AGB to PN phase. The primary goal of this study is to investigate the influence of metallicity on the mass-loss rate, under well determined luminosities. The luminosity of the star is a crucial parameter for the radiative driven stellar wind. Many efforts have been invested to constrain the AGB mass-loss rate, but most of the previous studies use Galactic objects, which have poorly known distances, thus their luminosities. To overcome this problem, we have studied mass loss from AGB stars in the Galaxies of the Local Group. The distance to the stars have been independently measured, thus AGB stars in these galaxies are ideal for understanding the mass-loss rate. Moreover, these galaxies have a lower metallicity than the Milky Way, providing an ideal target to study the influence of metallicity on the mass-loss rate. We report our analysis of mass loss, using the Spitzer Space Telescope and the Herschel Space Observatory. We will discuss the influence of AGB mass-loss on stellar evolution, and explore AGB and PN contribution to the lifecycle of matter in galaxies.
This is the first publication of the DEATHSTAR project. The goal of the project is to reduce the uncertainties of observational estimates of mass-loss rates from Asymptotic Giant Branch (AGB) stars. Line emission from 12CO J=2-1 and 3-2 were mapped using the ACA. In this initial analysis, the emission distribution was fit to a Gaussian distribution in the uv-plane. Detailed radiative transfer analysis will be presented in the future. The axes of the best-fit Gaussian at the line center of the 12CO J=2-1 emission gives a first indication of the size of the emitting region. Furthermore, the fitting results, such as the major and minor axis, center position, and the goodness of fit across both lines, constrain the symmetry of the emission distribution. We find that the CO envelope sizes are, in general, larger for C-type than for M-type AGB stars, which is expected if the CO/H2 ratio is larger in C-type stars. Furthermore, a relation between the 12CO J=2-1 size and circumstellar density is shown that, while in broad agreement with photodissociation calculations, reveals large scatter and systematic differences between the stellar types. The majority of the sources have CO envelopes that are consistent with a spherically symmetric, smooth outflow. For about a third of the sources, indications of strong asymmetries are found. This is consistent with previous interferometric investigations of northern sources. Smaller scale asymmetries are found in a larger fraction of sources. These results for CO envelope radii and shapes can be used to constrain detailed radiative transfer modeling of the same stars so as to determine mass-loss rates that are independent of photodissociation models. For a large fraction of the sources, observations at higher spatial resolution will be necessary to further investigate the complex circumstellar dynamics revealed by our ACA observations.
We aim to (1) set up simple and general analytical expressions to estimate mass-loss rates of evolved stars, and (2) from those calculate estimates for the mass-loss rates of asymptotic giant branch (AGB), red supergiant (RSG), and yellow hypergiant stars in our galactic sample. Rotationally excited lines of CO are a very robust diagnostic in the study of circumstellar envelopes (CSEs). When sampling different layers of the CSE, observations of these molecular lines lead to detailed profiles of kinetic temperature, expansion velocity, and density. A state-of-the-art, nonlocal thermal equilibrium, and co-moving frame radiative transfer code that predicts CO line intensities in the CSEs of late-type stars is used in deriving relations between stellar and molecular-line parameters, on the one hand, and mass-loss rate, on the other. We present analytical expressions for estimating the mass-loss rates of evolved stellar objects for 8 rotational transitions of the CO molecule, apply them to our extensive CO data set covering 47 stars, and compare our results to those of previous studies. Our expressions account for line saturation and resolving of the envelope, thereby allowing accurate determination of very high mass-loss rates. We argue that, for estimates based on a single rotational line, the CO(2-1) transition provides the most reliable mass-loss rate. The mass-loss rates calculated for the AGB stars range from 4x10^-8 Msun/yr up to 8x10^-5 Msun/yr. For RSGs they reach values between 2x10^-7 Msun/yr and 3x10^-4 Msun/yr. The estimates for the set of CO transitions allow time variability to be identified in the mass-loss rate. Possible mass-loss-rate variability is traced for 7 of the sample stars. We find a clear relation between the pulsation periods of the AGB stars and their derived mass-loss rates, with a levelling off at approx. 3x10^-5 Msun/yr for periods exceeding 850 days.
Low- and intermediate-mass stars eject much of their mass during the late, red giant branch (RGB) phase of evolution. The physics of their strong stellar winds is still poorly understood. In the standard model, stellar pulsations extend the atmosphere, allowing a wind to be driven through radiation pressure on condensing dust particles. Here we investigate the onset of the wind, using nearby RGB stars drawn from the Hipparcos catalogue. We find a sharp onset of dust production when the star first reaches a pulsation period of 60 days. This approximately co-incides with the point where the star transitions to the first overtone pulsation mode. Models of the spectral energy distributions show stellar mass-loss rate suddenly increases at this point, by a factor of ~10 over the existing (chromospherically driven) wind. The dust emission is strongly correlated with both pulsation period and amplitude, indicating stellar pulsation is the main trigger for the strong mass loss, and determines the mass-loss rate. Dust emission does not strongly correlate with stellar luminosity, indicating radiation pressure on dust has little effect on the mass-loss rate. RGB stars do not normally appear to produce dust, whereas dust production by asymptotic giant branch stars appears commonplace, and is probably ubiquitous above the RGB-tip luminosity. We conclude that the strong wind begins with a step change in mass-loss rate, and is triggered by stellar pulsations. A second rapid mass-loss-rate enhancement is suggested when the star transitions to the fundamental pulsation mode, at a period of ~300 days.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا