Do you want to publish a course? Click here

Discovery of OH in Circumstellar Disks Around Young Intermediate-Mass Stars

280   0   0.0 ( 0 )
 Added by Avi M. Mandell
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We detect emission from multiple low-excitation ro-vibrational transitions of OH from the two Herbig Ae stars AB Aurigae and MWC 758 in the 3.0 - 3.7 micron wavelength range (L-band), using the NIRSPEC instrument on Keck II. The inner radius for the emitting region in both stars is close to 1 AU. We compare an optically thin LTE model and a thin-wedge fluorescence model, finding rotational temperatures of 650 - 800 K and OH abundances of 10^42 - 10^45 molecules for the two stars. Comparisons with current chemical models support the fluorescence excitation model for AB Aurigae and possibly MWC 758, but further observations and detailed modeling are necessary to improve constraints on OH emission in different disk environments.



rate research

Read More

We have conducted a survey of 17 wide (> 100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and ten secondaries, with disk masses as low as $10^{-4} M_{odot}$. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of $F_{mm} propto M_{ast}^{1.5-2.0}$ to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.
We aim to understand the effect of stellar evolution on the evolution of protoplanetary disks. We focus in particular on the disk evolution around intermediate-mass (IM) stars, which evolve more rapidly than low-mass ones. We numerically solve the long-term evolution of disks around 0.5-5 solar-mass stars considering viscous accretion and photoevaporation (PE) driven by stellar far-ultraviolet (FUV), extreme-ultraviolet (EUV), and X-ray emission. We also take stellar evolution into account and consider the time evolution of the PE rate. We find that the FUV, EUV, and X-ray luminosities of IM stars evolve by orders of magnitude within a few Myr along with the time evolution of stellar structure, stellar effective temperature, or accretion rate. Therefore, the PE rate also evolves with time by orders of magnitude, and we conclude that stellar evolution is crucial for the disk evolution around IM stars.
We completed a search for circumstellar disks around Herbig Be stars using the NRAO Very Large Array (VLA) and the IRAM Plateau de Bure (PdB) interferometers. We present our new VLA and PdBI data for the three objects MWC 297, Z CMa, and LKHa 215. We constructed the SED from near-IR to centimeter wavelengths by adding our millimeter and centimeter data to the available data at other wavelengths, mainly Spitzer images. The entire SED was fitted using a disk+envelope model. In addition, we compiled all the disk millimeter observations in the literature and completed a statistical analysis of all the data. We show that the disk mass is usually only a small percentage (less than 10%) of the mass of the entire envelope in HBe stars. For the disks, there are large source-to-source variations. Two disks in our sample, R Mon and Z CMa, have similar sizes and masses to those found in T Tauri and Herbig Ae stars. The disks around MWC 1080 and MWC 297 are, however, smaller (rout<100 AU). We did not detect the disks towards MWC 137 and LkHa 215 at millimeter wavelengths, which limits the mass and the size of the possible circumstellar disks. A comparison between our data and previous results for T Tauri and Herbig Ae stars indicates that although massive disks (0.1 Msun) are found in young objects (10^4 yr), the masses of the disks around Herbig Be stars are usually 5-10 times lower than those around lower mass stars. We propose that disk photoevaporation is responsible for this behavior. In Herbig Be stars, the UV radiation disperses the gas in the outer disk on a timescale of a few 10^5 yr. Once the outer part of the disk has vanished, the entire gaseous disk is photoevaporated on a very short timescale (10^5 yr) and only a small, dusty disk consisting of large grains remains.
We are undertaking a large survey of over thirty disks using the Gemini Planet Imager (GPI) to see whether the observed dust structures match spectral energy distribution (SED) predictions and have any correlation with stellar properties. GPI can observe near-infrared light scattered from dust in circumstellar environments using high-resolution Polarimetric Differential Imaging (PDI) with coronagraphy and adaptive optics. The data have been taken in J and H bands over two years, with inner working angles of 0.08 and 0.11 respectively. Ahead of the release of the complete survey results, here we present five objects with extended and irregular dust structures within 2 of the central star. These objects are: FU Ori; MWC 789; HD 45677; Hen 3-365; and HD 139614. The observed structures are consistent with each object being a pre-main-sequence star with protoplanetary dust. The five objects circumstellar environments could result from extreme youth and complex initial conditions, from asymmetric scattering patterns due to shadows cast by misaligned disks, or in some cases from interactions with companions. We see complex U_phi structures in most objects that could indicate multiple scattering or result from the illumination of companions. Specific key findings include the first high-contrast observation of MWC 789 revealing a newly-discovered companion candidate and arc, and two faint companion candidates around Hen 3-365. These two objects should be observed further to confirm whether the companion candidates are co-moving. Further observations and modeling are required to determine the causes of the structures.
274 - J. Varga , P. Abraham , L. Chen 2018
Context. Protoplanetary disks show large diversity regarding their morphology and dust composition. With mid-infrared interferometry the thermal emission of disks can be spatially resolved, and the distribution and properties of the dust within can be studied. Aims. Our aim is to perform a statistical analysis on a large sample of 82 disks around low- and intermediate-mass young stars, based on mid-infrared interferometric observations. We intend to study the distribution of disk sizes, variability, and the silicate dust mineralogy. Methods. Archival mid-infrared interferometric data from the MIDI instrument on the VLTI are homogeneously reduced and calibrated. Geometric disk models are used to fit the observations to get spatial information about the disks. An automatic spectral decomposition pipeline is applied to analyze the shape of the silicate feature. Results. We present the resulting data products in the form of an atlas, containing N band correlated and total spectra, visibilities, and differential phases. The majority of our data can be well fitted with a continuous disk model, except for a few objects, where a gapped model gives a better match. From the mid-infrared size--luminosity relation we find that disks around T Tauri stars are generally colder and more extended with respect to the stellar luminosity than disks around Herbig Ae stars. We find that in the innermost part of the disks ($r lesssim 1$~au) the silicate feature is generally weaker than in the outer parts, suggesting that in the inner parts the dust is substantially more processed. We analyze stellar multiplicity and find that in two systems (AB Aur and HD 72106) data suggest a new companion or asymmetric inner disk structure. We make predictions for the observability of our objects with the upcoming MATISSE instrument, supporting the practical preparations of future MATISSE observations of T Tauri stars.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا