No Arabic abstract
We investigate potential quantum nonlinear corrections to Diracs equation through its sub-leading effect on neutrino oscillation probabilities. Working in the plane-wave approximation and in the $mu-tau$ sector, we explore various classes of nonlinearities, with or without an accompanying Lorentz violation. The parameters in our models are first delimited by current experimental data before they are used to estimate corrections to oscillation probabilities. We find that only a small subset of the considered nonlinearities have the potential to be relevant at higher energies and thus possibly detectable in future experiments. A falsifiable prediction of our models is an energy dependent effective mass-squared, generically involving fractional powers of the energy.
If neutrinos get mass via the seesaw mechanism the mixing matrix describing neutrino oscillations can be effectively non-unitary. We show that in this case the neutrino appearance probabilities involve a new CP phase, phi, associated to non-unitarity. This leads to an ambiguity in extracting the standard three--neutrino phase delta_CP, which can survive even after neutrino and antineutrino channels are combined. Its existence should be taken into account in the planning of any oscillation experiment aiming at a robust measurement of delta_CP.
Neutrino mixing and oscillations in quantum field theory framework had been studied before, which shew that the Fock space of flavor states is unitarily inequivalent to that of mass states (inequivalent vacua model). A paradox emerges when we use these neutrino weak states to calculate the amplitude of $W$ boson decay. The branching ratio of W(+) -> e(+) + nu_mu to W(+) -> e(+) + nu_e is approximately at the order of O({m_i^2}/{k^2}). The existence of flavor changing currents contradicts to the Hamiltonian we started from, and the usual knowledge about weak processes. Also, negative energy neutrinos (or violating the principle of energy conservation) appear in this framework. We discuss possible reasons for the appearance of this paradox.
We propose an idea of the constrained Feynman amplitude for the scattering of the charged lepton and the virtual W-boson, $l_{beta} + W_{rho} rightarrow l_{alpha} + W_{lambda}$, from which the conventional Pontecorvo oscillation formula of relativistic neutrinos is readily obtained using plane waves for all the particles involved. In a path integral picture, the neutrino propagates forward in time between the production and detection vertices, which are constrained respectively on the 3-dimensional spacelike hypersurfaces separated by a macroscopic positive time $tau$. The covariant Feynman amplitude is formally recovered if one sums over all possible values of $tau$ (including negative $tau$).
The lightness of the Standard Model (SM) neutrinos could be understood if their masses were to be generated by new physics at a high scale, through the so-called seesaw mechanism involving heavy fermion singlets. If new physics violates baryon minus lepton number by only a small amount, the heavy fermion singlets as well as the SM neutrinos split into pairs of quasi-Dirac states. At the scale of the fermion singlets, this quasi-Diracness allows to enhance CP violation in their decays and the cosmic matter-antimatter asymmetry can be successfully generated through resonant leptogenesis. At lower scale, this quasi-Diracness results in small SM neutrino mass splitting which can be probed in oscillation experiments. Remarkably, the parameter space for viable leptogenesis spans over the regime relevant for solar and atmospheric neutrino oscillations.
In astrophysical scenarios with large neutrino density, like supernovae and the early universe, the presence of neutrino-neutrino interactions can give rise to collective flavor oscillations in the out-of-equilibrium collective dynamics of a neutrino cloud. The role of quantum correlations in these phenomena is not yet well understood, in large part due to complications in solving for the real-time evolution of the strongly coupled many-body system. Future fault-tolerant quantum computers hold the promise to overcome much of these limitations and provide direct access to the correlated neutrino dynamic. In this work, we present the first simulation of a small system of interacting neutrinos using current generation quantum devices. We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time. The results show the critical importance of error-mitigation techniques to extract meaningful results for entanglement measures using noisy, near term, quantum devices.