Do you want to publish a course? Click here

XO-4b: An Extrasolar Planet Transiting an F5V Star

165   0   0.0 ( 0 )
 Added by Peter R. McCullough
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of the planet XO-4b, which transits the star XO-4 (GSC 03793-01994, V=10.7, F5V). Transits are 1.0% deep and 4.4 hours in duration. The star XO-4 has a mass of 1.32 M_sun.... The planet XO-4b has a mass of 1.72 M_Jup....radius of 1.34 R_Jup...orbital period 4.125 days. We analyze scintillation-limited differential R-band photometry of XO-4b in transit made with a 1.8-m telescope under photometric conditions, yielding photometric precision of 0.6 to 2.0 millimag per one-minute interval. The declination of XO-4 places it within the continuous viewing zone of the Hubble Space Telescope (HST), which permits observation without interruption caused by occultation by the Earth. Because the stellar rotation periods of the three hottest stars orbited by transiting gas-giant planets are 2.0, 1.1, and 2.0 times the planetary orbital periods, we note the possibility of resonant interaction.



rate research

Read More

We report the discovery of a massive (Mpsini = 13.02 +/- 0.64 Mjup; total mass 13.25 +/- 0.64 Mjup), large (1.95 +/- 0.16 Rjup) planet in a transiting, eccentric orbit (e = 0.260 +/- 0.017) around a 10th magnitude F5V star in the constellation Camelopardalis. We designate the planet XO-3b, and the star XO-3, also known as GSC 03727-01064. The orbital period of XO-3b is 3.1915426 +/- 0.00014 days. XO-3 lacks a trigonometric distance; we estimate its distance to be 260 +/- 23 pc. The radius of XO-3 is 2.13 +/- 0.21 Rsun, its mass is 1.41 +/- 0.08 Msun, its vsini = 18.54 +/- 0.17 km/s, and its metallicity is [Fe/H] = -0.177 +/- 0.027. This system is unusual for a number of reasons. XO-3b is one of the most massive planets discovered around any star for which the orbital period is less than 10 days. The mass is near the deuterium burning limit of 13 Mjup, which is a proposed boundary between planets and brown dwarfs. Although Burrows et al. (2001) propose that formation in a disk or formation in the interstellar medium in a manner similar to stars is a more logical way to differentiate planets and brown dwarfs, our current observations are not adequate to address this distinction. XO-3b is also unusual in that its eccentricity is large given its relatively short orbital period. Both the planetary radius and the inclination are functions of the spectroscopically determined stellar radius. Analysis of the transit light curve of XO-3b suggests that the spectroscopically derived parameters may be over estimated. Though relatively noisy, the light curves favor a smaller radius in order to better match the steepness of the ingress and egress. The light curve fits imply a planetary radius of 1.25 +/- 0.15 Rjup, which would correspond to a mass of 12.03 +/- 0.46 Mjup.
We report on observations of 11 transit events of the transiting extrasolar planet XO-1b by the SuperWASP-North observatory. From our data, obtained during May-September 2004, we find that the XO-1b orbital period is 3.941634 +/- 0.000137 days, the planetary radius is 1.34 +/- 0.12 Rjup and the inclination is 88.92 +/- 1.04 degrees, in good agreement with previously published values. We tabulate the transit timings from 2004 SuperWASP and XO data, which are the earliest obtained for XO-1b, and which will therefore be useful for future investigations of timing variations caused by additional perturbing planets. We also present an ephemeris for the transits. See http://www.superwasp.org for general project details.
Context: Photometric observations for the OGLE-II microlens monitoring campaign have been taken in the period 1997-2000. All light curves of this campaign have recently been made public. Our analysis of these data has revealed 13 low-amplitude transiting objects among ~15700 stars in three Carina fields towards the galactic disk. One of these objects, OGLE2-TR-L9 (P~2.5 days), turned out to be an excellent transiting planet candidate. Aims: In this paper we report on our investigation of the true nature of OGLE2-TR-L9, by re-observing the photometric transit with the aim to determine the transit parameters at high precision, and by spectroscopic observations, to estimate the properties of the host star, and to determine the mass of the transiting object through radial velocity measurements. Methods: High precision photometric observations have been obtained in g, r, i, and z band simultaneously, using the new GROND detector, mounted on the MPI/ESO 2.2m telescope at La Silla. Eight epochs of high-dispersion spectroscopic observations were obtained using the fiber-fed FLAMES/UVES Echelle spectrograph, mounted on ESOs Very Large Telescope at Paranal. Results: The photometric transit, now more than 7 years after the last OGLE-II observations, was re-discovered only ~8 minutes from its predicted time. The primary object is a fast rotating F3 star, with vsini=39.33+-0.38 km/s, T=6933+-58 K, log g = 4.25+-0.01, and [Fe/H] = -0.05+-0.20. The transiting object is an extrasolar planet with M_p=4.5+-1.5 M_Jup and R_p=1.61+-0.04 R_Jup. The rejection of possible blend scenarios was based on a quantitative analysis of the multi-color photometric data [abridged].
We report photometric and radial velocity observations of the XO-4 transiting planetary system, conducted with the FLWO 1.2m telescope and the 8.2m Subaru Telescope. Based on the new light curves, the refined transit ephemeris of XO-4b is $P = 4.1250828 pm 0.0000040$ days and $T_c [BJD_TDB] = 2454485.93323 pm 0.00039$. We measured the Rossiter-McLaughlin effect of XO-4b and estimated the sky-projected angle between the stellar spin axis and the planetary orbital axis to be $lambda = -46.7^{circ} ^{+8.1^{circ}}_{-6.1^{circ}}$. This measurement of $lambda$ is less robust than in some other cases because the impact parameter of the transit is small, causing a strong degeneracy between $lambda$ and the projected stellar rotational velocity. Nevertheless, our finding of a spin-orbit misalignment suggests that the migration process for XO-4b involved few-body dynamics rather than interaction with a gaseous disk. In addition, our result conforms with the pattern reported by Winn et al. (2010, ApJL, 718, L145) that high obliquities are preferentially found for stars with effective temperatures hotter than 6250~K.
139 - B. Zuckerman 2007
We report the relative abundances of 17 elements in the atmosphere of the white dwarf star GD 362, material that, very probably, was contained previously in a large asteroid or asteroids with composition similar to the Earth/Moon system. The asteroid may have once been part of a larger parent body not unlike one of the terrestrial planets of our solar system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا