Do you want to publish a course? Click here

Shearing active gels close to the isotropic-nematic transition

293   0   0.0 ( 0 )
 Added by Davide Marenduzzo
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study numerically the rheological properties of a slab of active gel close o the isotropic-nematic transition. The flow behavior shows strong dependence on sample size, boundary conditions, and on the bulk constitutive curve, which, on entering the nematic phase, acquires an activity-induced discontinuity at the origin. The precursor of this within the metastable isotropic phase for contractile systems ({em e.g.,} actomyosin gels) gives a viscosity divergence; its counterpart for extensile ({em e.g.,} {em B. subtilis}) suspensions admits instead a shear-banded flow with zero apparent viscosity.



rate research

Read More

93 - A. Roshi 2003
High-resolution ac-calorimetry has been carried out on dispersions of aerosils in the liquid crystal octyloxycyanobiphenyl (8OCB) as a function of aerosil concentration and temperature spanning the crystal to isotropic phases. The liquid-crystal 8OCB is elastically stiffer than the previously well studied octylcyanobiphenyl (8CB)+aerosil system and so, general quenched random disorder effects and liquid-crystal specific effects can be distinguished. A double heat capacity feature is observed at the isotropic to nematic phase transition with an aerosil independent overlap of the heat capacity wings far from the transition and having a non-monotonic variation of the transition temperature. A crossover between low and high aerosil density behavior is observed for 8OCB+aerosil. These features are generally consistent with those on the 8CB+aerosil system. Differences between these two systems in the magnitude of the transition temperature shifts, heat capacity suppression, and crossover aerosil density between the two regimes of behavior indicate a liquid crystal specific effect. The low aerosil density regime is apparently more orientationally disordered than the high aerosil density regime, which is more translationally disordered. An interpretation of these results based on a temperature dependent disorder strength is discussed. Finally, a detailed thermal hysteresis study has found that crystallization of a well homogenized sample perturbs and increases the disorder for low aerosil density samples but does not influence high density samples.
Using overdamped Brownian dynamics simulations we investigate the isotropic-nematic (IN) transition of self-propelled rods in three spatial dimensions. For two well-known model systems (Gay-Berne potential and hard spherocylinders) we find that turning on activity moves to higher densities the phase boundary separating an isotropic phase from a (nonpolar) nematic phase. This active IN phase boundary is distinct from the boundary between isotropic and polar-cluster states previously reported in two-dimensional simulation studies and, unlike the latter, is not sensitive to the system size. We thus identify a generic feature of anisotropic active particles in three dimensions.
Active fluids are intrinsically out-of-equilibrium systems due to the internal energy injection of the active constituents. We show here that a transition from a motion-less isotropic state towards a flowing polar one can be possibly driven by the sole active injection through the action of polar-hydrodynamic interactions in absence of an ad hoc free-energy which favors the development of an ordered phase. In particular, we propose an analytical argument and we perform lattice Boltzmann simulations where the appearance of large temporal fluctuations in the polar fraction of the system is observed at the transition point. Moreover, we make use of a scale-to-scale analysis to unveil the energy transfer mechanism, proving that elastic absorption plays a relevant role in the overall dynamics of the system, contrary to what reported in previous works on the usual active gel theory where this term could be factually neglected.
We study a model of an active gel of cross-linked semiflexible filaments with additional active linkers such as myosin II clusters. We show that the coupling of the elasticity of the semiflexible filaments to the mechanical properties of the motors leads to contractile behavior of the gel, in qualitative agreement with experimental observations. The motors, however, soften the zero frequency elastic constant of the gel. When the collective motor dynamics is incorporated in the model, a stiffening of the network at high frequencies is obtained. The frequency controlling the crossover between low and high frequency network elasticity is estimated in terms of microscopic properties of motors and filaments, and can be as low as 10^(-3)Hz.
We introduce a lattice model for active nematic composed of self-propelled apolar particles,study its different ordering states in the density-temperature parameter space, and compare with the corresponding equilibrium model. The active particles interact with their neighbours within the framework of the Lebwohl-Lasher model, and move anisotropically along their orientation to an unoccupied nearest neighbour lattice site. An interplay of the activity, thermal fluctuations and density gives rise distinct states in the system. For a fixed temperature, the active nematic shows a disordered isotropic state, a locally ordered inhomogeneous mixed state, and bistability between the inhomogeneous mixed and a homogeneous globally ordered state in different density regime. In the low temperature regime, the isotropic to the inhomogeneous mixed state transition occurs with a jump in the order parameter at a density less than the corresponding equilibrium disorder-order transition density. Our analytical calculations justify the shift in the transition density and the jump in the order parameter. We construct the phase diagram of the active nematic in the density-temperature plane.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا