We investigate the separability of quantum states based on covariance matrices. Separability criteria are presented for multipartite states. The lower bound of concurrence proposed in Phys. Rev. A. 75, 052320 (2007) is improved by optimizing the local orthonormal observables.
By combining a parameterized Hermitian matrix, the realignment matrix of the bipartite density matrix $rho$ and the vectorization of its reduced density matrices, we present a family of separability criteria, which are stronger than the computable cross norm or realignment (CCNR) criterion. With linear contraction methods, the proposed criteria can be used to detect the multipartite entangled states that are biseparable under any bipartite partitions. Moreover, we show by examples that the presented multipartite separability criteria can be more efficient than the corresponding multipartite realignment criterion based on CCNR, multipartite correlation tensor criterion and multipartite covariance matrix criterion.
Separability is an important problem in theory of quantum entanglement. By using the Bloch representation of quantum states in terms of the Heisenberg-Weyl observable basis, we present a new separability criterion for bipartite quantum systems. It is shown that this criterion can be better than the previous ones in detecting entanglement. The results are generalized to multipartite quantum states.
The correlation matrices or tensors in the Bloch representation of density matrices are encoded with entanglement properties. In this paper, based on the Bloch representation of density matrices, we give some new separability criteria for bipartite and multipartite quantum states. Theoretical analysis and some examples show that the proposed criteria can be more efficient than the previous related criteria.
We study the normal form of multipartite density matrices. It is shown that the correlation matrix (CM) separability criterion can be improved from the normal form we obtained under filtering transformations. Based on CM criterion the entanglement witness is further constructed in terms of local orthogonal observables for both bipartite and multipartite systems.