One-dimensional Schrodinger operators with singular periodic potentials


Abstract in English

We study the one-dimensional Schrodinger operators $$ S(q)u:=-u+q(x)u,quad uin mathrm{Dom}left(S(q)right), $$ with $1$-periodic real-valued singular potentials $q(x)in H_{operatorname{per}}^{-1}(mathbb{R},mathbb{R})$ on the Hilbert space $L_{2}left(mathbb{R}right)$. We show equivalence of five basic definitions of the operators $S(q)$ and prove that they are self-adjoint. A new proof of continuity of the spectrum of the operators $S(q)$ is found. Endpoints of spectrum gaps are precisely described.

Download