Do you want to publish a course? Click here

Square-free discriminants of Frobenius rings

169   0   0.0 ( 0 )
 Added by Chantal David
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

Let $E$ be an elliptic curve over $Q$. It is well known that the ring of endomorphisms of $E_p$, the reduction of $E$ modulo a prime $p$ of ordinary reduction, is an order of the quadratic imaginary field $Q(pi_p)$ generated by the Frobenius element $pi_p$. When the curve has complex multiplication (CM), this is always a fixed field as the prime varies. However, when the curve has no CM, very little is known, not only about the order, but about the fields that might appear as algebra of endomorphisms varying the prime. The ring of endomorphisms is obviously related with the arithmetic of $a_p^2-4p$, the discriminant of the characteristic polynomial of the Frobenius element. In this paper, we are interested in the function $pi_{E,r,h}(x)$ counting the number of primes $p$ up to $x$ such that $a_p^2-4p$ is square-free and in the congruence class $r$ modulo $h$. We give in this paper the precise asymptotic for $pi_{E,r,h}(x)$ when averaging over elliptic curves defined over the rationals, and we discuss the relation of this result with the Lang-Trotter conjecture, and with some other problems related to the curve modulo $p$.



rate research

Read More

Let $R$ be a finite ring and define the hyperbola $H={(x,y) in R times R: xy=1 }$. Suppose that for a sequence of finite odd order rings of size tending to infinity, the following square root law bound holds with a constant $C>0$ for all non-trivial characters $chi$ on $R^2$: [ left| sum_{(x,y)in H}chi(x,y)right|leq Csqrt{|H|}. ] Then, with a finite number of exceptions, those rings are fields. For rings of even order we show that there are other infinite families given by Boolean rings and Boolean twists which satisfy this square-root law behavior. We classify the extremal rings, those for which the left hand side of the expression above satisfies the worst possible estimate. We also describe applications of our results to problems in graph theory and geometric combinatorics. These results provide a quantitative connection between the square root law in number theory, Salem sets, Kloosterman sums, geometric combinatorics, and the arithmetic structure of the underlying rings.
Let $mathcal{R}$ be a finite set of integers satisfying appropriate local conditions. We show the existence of long clusters of primes $p$ in bounded length intervals with $p-b$ squarefree for all $b in mathcal{R}$. Moreover, we can enforce that the primes $p$ in our cluster satisfy any one of the following conditions: (1) $p$ lies in a short interval $[N, N+N^{frac{7}{12}+epsilon}]$, (2) $p$ belongs to a given inhomogeneous Beatty sequence, (3) with $c in (frac{8}{9},1)$ fixed, $p^c$ lies in a prescribed interval mod $1$ of length $p^{-1+c+epsilon}$.
88 - William Craig 2019
The discriminant of a polynomial of the form $pm x^n pm x^m pm 1$ has the form $n^n pm m^m(n-m)^{n-m}$ when $n,m$ are relatively prime. We investigate when these discriminants have prime power divisors. We explain several symmetries that appear in the classification of these values of $n,m$. We prove that there are infinitely many pairs of integers $n,m$ for which this discriminant has no prime cube divisors. This result is extended to show that for infinitely many fixed $m$, there are infinitely many $n$ for which the discriminant has no prime cube divisor.
In this paper, we clarify some aspects on LCD codes in the literature. We first prove that a non-free LCD code does not exist over finite commutative Frobenius local rings. We then obtain a necessary and sufficient condition for the existence of LCD code over finite commutative Frobenius rings. We later show that a free constacyclic code over finite chain ring is LCD if and only if it is reversible, and also provide a necessary and sufficient condition for a constacyclic code to be reversible over finite chain rings. We illustrate the minimum Lee-distance of LCD codes over some finite commutative chain rings and demonstrate the results with examples. We also got some new optimal $mathbb{Z}_4$ codes of different lengths {which are} cyclic LCD codes over $mathbb{Z}_4$.
Let d1 and d2 be discriminants of distinct quadratic imaginary orders O_d1 and O_d2 and let J(d1,d2) denote the product of differences of CM j-invariants with discriminants d1 and d2. In 1985, Gross and Zagier gave an elegant formula for the factorization of the integer J(d1,d2) in the case that d1 and d2 are relatively prime and discriminants of maximal orders. To compute this formula, they first reduce the problem to counting the number of simultaneous embeddings of O_d1 and O_d2 into endomorphism rings of supersingular curves, and then solve this counting problem. Interestingly, this counting problem also appears when computing class polynomials for invariants of genus 2 curves. However, in this application, one must consider orders O_d1 and O_d2 that are non-maximal. Motivated by the application to genus 2 curves, we generalize the methods of Gross and Zagier and give a computable formula for v_p(J(d1,d2)) for any distinct pair of discriminants d1,d2 and any prime p>2. In the case that d1 is squarefree and d2 is the discriminant of any quadratic imaginary order, our formula can be stated in a simple closed form. We also give a conjectural closed formula when the conductors of d1 and d2 are relatively prime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا