Do you want to publish a course? Click here

Strong colour fields and cosmic ray showers at ultra-high energies

204   0   0.0 ( 0 )
 Added by Jaime Alvarez-Muniz
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We argue that the increase of the ratio baryon/meson due to the presence of strong colour fields and percolation in ultra-high energy hadronic collisions, helps to explain some of the global features of ultra-high energy cosmic ray cascades at E>10^18 eV and, in particular the observed excess in the number of muons with respect to current models of hadronic interactions. A reasonable agreement with the small value and slope of the average depth of shower maximum Xmax vs shower energy -- as seen in data collected at the Pierre Auger Observatory -- can be obtained with a fast increase of the p-Air production cross-section compatible with the Froissart bound.



rate research

Read More

An analysis of p-air cross section data from Extensive Air Shower (EAS) measurements is presented, based on an analytical representation of the pp scattering amplitudes that describes with high precision all available accelerator data at ISR, SPS and LHC energies. The theoretical basis of the representation, together with the very smooth energy dependence of parameters controlled by unitarity and dispersion relations, permits reliable extrapolation to high energy cosmic ray and asymptotic energy ranges. Calculations of the p-air production cross section based on Glauber formalism are made using the input values of the pp forward scattering parameters at high energies, with attention given to the independence of the real and imaginary slope parameters. The influence of contributions of diffractive intermediate states, according to Good-Walker formalism, is examined. The comparison with cosmic ray data is very satisfactory in the whole pp energy interval from 1 to 100 TeV. High energy asymptotic behavior of p-air cross sections is investigated in view of the geometric scaling property of the pp amplitudes. The observed energy dependence of the ratio between p-air and pp cross sections in the data is shown to be related to the nature of the pp cross section at high energies, that does not agree with the black disk image.
We discuss that hadron-induced atmospheric air showers from ultra-high energy cosmic rays are sensitive to QCD interactions at very small momentum fractions x where nonlinear effects should become important. The leading partons from the projectile acquire large random transverse momenta as they pass through the strong field of the target nucleus, which breaks up their coherence. This leads to a steeper x_F-distribution of leading hadrons as compared to low energy collisions, which in turn reduces the position of the shower maximum Xmax. We argue that high-energy hadronic interaction models should account for this effect, caused by the approach to the black-body limit, which may shift fits of the composition of the cosmic ray spectrum near the GZK cutoff towards lighter elements. We further show that present data on Xmax(E) exclude that the rapid ~ 1/x^0.3 growth of the saturation boundary (which is compatible with RHIC and HERA data) persists up to GZK cutoff energies. Measurements of pA collisions at LHC could further test the small-x regime and advance our understanding of high density QCD significantly.
A natural interpretation of the correlation between nearby Active Galactic Nuclei (AGN) and the highest-energy cosmic rays observed recently by the Pierre Auger Collaboration is that the sources of the cosmic rays are either AGN or other objects with a similar spatial distribution (the ``AGN hypothesis). We question this interpretation. We calculate the expected distribution of the arrival directions of cosmic rays under the AGN hypothesis and argue that it is not supported by the data, one of manifestations of the discrepancy being the deficit of events from the direction of the Virgo supercluster. We briefly discuss possible alternative explanations including the origin of a significant part of the observed events from Cen A.
We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment Cosmic Ray Energetics And Mass (CREAM). The instrument included different particle detectors to provide redundant charge identification and measure the energy of CRs up to several hundred TeV. The measured individual energy spectra of C, O, Ne, Mg, Si, and Fe are presented up to $sim 10^{14}$ eV. The spectral shape looks nearly the same for these primary elements and it can be fitted to an $E^{-2.66 pm 0.04}$ power law in energy. Moreover, a new measurement of the absolute intensity of nitrogen in the 100-800 GeV/$n$ energy range with smaller errors than previous observations, clearly indicates a hardening of the spectrum at high energy. The relative abundance of N/O at the top of the atmosphere is measured to be $0.080 pm 0.025 $(stat.)$ pm 0.025 $(sys.) at $sim $800 GeV/$n$, in good agreement with a recent result from the first CREAM flight.
317 - M. Ave , P.J. Boyle , F. Gahbauer 2008
The TRACER instrument (``Transition Radiation Array for Cosmic Energetic Radiation) has been developed for direct measurements of the heavier primary cosmic-ray nuclei at high energies. The instrument had a successful long-duration balloon flight in Antarctica in 2003. The detector system and measurement process are described, details of the data analysis are discussed, and the individual energy spectra of the elements O, Ne, Mg, Si, S, Ar, Ca, and Fe (nuclear charge Z=8 to 26) are presented. The large geometric factor of TRACER and the use of a transition radiation detector make it possible to determine the spectra up to energies in excess of 10$^{14}$ eV per particle. A power-law fit to the individual energy spectra above 20 GeV per amu exhibits nearly the same spectral index ($sim$ 2.65 $pm$ 0.05) for all elements, without noticeable dependence on the elemental charge Z.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا