Do you want to publish a course? Click here

Boundary-induced abrupt transition in the symmetric exclusion process

181   0   0.0 ( 0 )
 Added by Meesoon Ha
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the role of the boundary in the symmetric simple exclusion process with competing nonlocal and local hopping events. With open boundaries, the system undergoes a first order phase transition from a finite density phase to an empty road phase as the nonlocal hopping rate increases. Using a cluster stability analysis, we determine the location of such an abrupt nonequilibrium phase transition, which agrees well with numerical results. Our cluster analysis provides a physical insight into the mechanism behind this transition. We also explain why the transition becomes discontinuous in contrast to the case with periodic boundary conditions, in which the continuous phase transition has been observed.



rate research

Read More

We revisit the totally asymmetric simple exclusion process with open boundaries (TASEP), focussing on the recent discovery by de Gier and Essler that the model has a dynamical transition along a nontrivial line in the phase diagram. This line coincides neither with any change in the steady-state properties of the TASEP, nor the corresponding line predicted by domain wall theory. We provide numerical evidence that the TASEP indeed has a dynamical transition along the de Gier-Essler line, finding that the most convincing evidence was obtained from Density Matrix Renormalisation Group (DMRG) calculations. By contrast, we find that the dynamical transition is rather hard to see in direct Monte Carlo simulations of the TASEP. We furthermore discuss in general terms scenarios that admit a distinction between static and dynamic phase behaviour.
We study the probability distribution of entanglement in the Quantum Symmetric Simple Exclusion Process, a model of fermions hopping with random Brownian amplitudes between neighboring sites. We consider a protocol where the system is initialized in a pure product state of $M$ particles, and focus on the late-time distribution of Renyi-$q$ entropies for a subsystem of size $ell$. By means of a Coulomb gas approach from Random Matrix Theory, we compute analytically the large-deviation function of the entropy in the thermodynamic limit. For $q>1$, we show that, depending on the value of the ratio $ell/M$, the entropy distribution displays either two or three distinct regimes, ranging from low- to high-entanglement. These are connected by points where the probability density features singularities in its third derivative, which can be understood in terms of a transition in the corresponding charge density of the Coulomb gas. Our analytic results are supported by numerical Monte Carlo simulations.
We obtain the exact large deviation functions of the density profile and of the current, in the non-equilibrium steady state of a one dimensional symmetric simple exclusion process coupled to boundary reservoirs with slow rates. Compared to earlier results, where rates at the boundaries are comparable to the bulk ones, we show how macroscopic fluctuations are modified when the boundary rates are slower by an order of inverse of the system length.
We verify the finite time fluctuation theorem for a linear Ising chain at its ends in contact with heat reservoirs. Analytic results are derived for a chain consisting of only two spins. The system can be mapped onto a model for particle transport, namely the symmetric exclusion process, in contact with thermal and particle reservoirs. We modify the symmetric exclusion process to represent a thermal engine and reproduce universal features of the efficiency at maximum power.
We introduce a new update algorithm for exclusion processes, more suitable for the modeling of pedestrian traffic. Pedestrians are modeled as hard-core particles hopping on a discrete lattice, and are updated in a fixed order, determined by a phase attached to each pedestrian. While the case of periodic boundary conditions was studied in a companion paper, we consider here the case of open boundary conditions. The full phase diagram is predicted analytically and exhibits a transition between a free flow phase and a jammed phase. The density profile is predicted in the frame of a domain wall theory, and compared to Monte Carlo simulations, in particular in the vicinity of the transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا