Do you want to publish a course? Click here

Twisted Poincare Invariance, Noncommutative Gauge Theories and UV-IR Mixing

161   0   0.0 ( 0 )
 Added by Amilcar Queiroz Mr
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

In the absence of gauge fields, quantum field theories on the Groenewold-Moyal (GM) plane are invariant under a twisted action of the Poincare group if they are formulated following [1, 2, 3, 4, 5, 6]. In that formulation, such theories also have no UV-IR mixing [7]. Here we investigate UV-IR mixing in gauge theories with matter following the approach of [3, 4]. We prove that there is UV-IR mixing in the one-loop diagram of the S-matrix involving a coupling between gauge and matter fields on the GM plane, the gauge field being nonabelian. There is no UV-IR mixing if it is abelian.



rate research

Read More

58 - Tadahito Nakajima 2002
Using path integral method (Fujikawas method) we calculate anomalies in noncommutative gauge theories with fermions in the bi-fundamental and adjoint representations. We find that axial and chiral gauge anomalies coming from non-planar contributions are derived in the low noncommutative momentum limit $widetilde{p}^{mu}(equiv theta^{mu u}p_{ u}) to 0$. The adjoint chiral fermion carries no anomaly in the non-planar sector in $D=4k (k=1,2,...,)$ dimensions. It is naturally shown from the path integral method that anomalies in non-planar sector originate in UV/IR mixing.
61 - Swarnendu Sarkar 2006
In this paper we study the phenomenon of UV/IR mixing in noncommutative field theories from the point of view of world-sheet open-closed duality in string theory. New infrared divergences in noncommutative field theories arise as a result of integrating over high momentum modes in the loops. These are believed to come from integrating out additional bulk closed string modes. We analyse this issue in detail for the bosonic theory and further for the supersymmetric theory on the $C^2/Z_2$ orbifold. We elucidate on the exact role played by the constant background $B$-field in this correspondence.
It is by now well known that the Poincare group acts on the Moyal plane with a twisted coproduct. Poincare invariant classical field theories can be formulated for this twisted coproduct. In this paper we systematically study such a twisted Poincare action in quantum theories on the Moyal plane. We develop quantum field theories invariant under the twisted action from the representations of the Poincare group, ensuring also the invariance of the S-matrix under the twisted action of the group . A significant new contribution here is the construction of the Poincare generators using quantum fields.
173 - Edwin Langmann 1996
I review results from recent investigations of anomalies in fermion--Yang Mills systems in which basic notions from noncommutative geometry (NCG) where found to naturally appear. The general theme is that derivations of anomalies from quantum field theory lead to objects which have a natural interpretation as generalization of de Rham forms to NCG, and that this allows a geometric interpretation of anomaly derivations which is useful e.g. for making these calculations efficient. This paper is intended as selfcontained introduction to this line of ideas, including a review of some basic facts about anomalies. I first explain the notions from NCG needed and then discuss several different anomaly calculations: Schwinger terms in 1+1 and 3+1 dimensional current algebras, Chern--Simons terms from effective fermion actions in arbitrary odd dimensions. I also discuss the descent equations which summarize much of the geometric structure of anomalies, and I describe that these have a natural generalization to NCG which summarize the corresponding structures on the level of quantum field theory. Contribution to Proceedings of workshop `New Ideas in the Theory of Fundamental Interactions, Szczyrk, Poland 1995; to appear in Acta Physica Polonica B.
68 - Tadahito Nakajima 2001
We calculate conformal anomalies in noncommutative gauge theories by using the path integral method (Fujikawas method). Along with the axial anomalies and chiral gauge anomalies, conformal anomalies take the form of the straightforward Moyal deformation in the corresponding conformal anomalies in ordinary gauge theories. However, the Moyal star product leads to the difference in the coefficient of the conformal anomalies between noncommutative gauge theories and ordinary gauge theories. The $beta$ (Callan-Symanzik) functions which are evaluated from the coefficient of the conformal anomalies coincide with the result of perturbative analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا