No Arabic abstract
An interesting probe of the nature of dark energy is the measure of its sound speed, $c_s$. We review the significance for constraining sound speed models of dark energy using large neutral hydrogen (HI) surveys with the Square Kilometre Array (SKA). Our analysis considers the effect on the sound speed measurement that arises from the covariance of $c_s$ with the dark energy density, $Omega_LLambda$, and a time-varying equation of state, $w(a)=w_0+(1-a)w_a$. We find that the approximate degeneracy between dark energy parameters that arises in power spectrum observations is lifted through redshift tomography of the HI-galaxy angular power spectrum, resulting in sound speed constraints that are not severely degraded. The cross-correlation of the galaxy and the integrated Sachs-Wolfe (ISW) effect spectra contributes approximately 10 percent of the information that is needed to distinguish variations in the dark energy parameters, and most of the discriminating signal comes from the galaxy auto-correlation spectrum. We also find that the sound speed constraints are weakly sensitive to the HI bias model. These constraints do not improve substantially for a significantly deeper HI survey since most of the clustering sensitivity to sound speed variations arises from $z lsim 1.5$. A detection of models with sound speeds close to zero, $c_s lsim 0.01,$ is possible for dark energy models with $wgsim -0.9$.
The possibility of reconstruction of Lagrangian for the scalar field dark energy with constant effective sound speed $c_s$ is analyzed. It is found that such reconstruction can be made with accuracy up to an arbitrary constant. The value of $c_s$ is estimated together with other dark energy parameters ($Omega_{de}$, $w_0$, $c_a^2$) and main cosmological ones on the basis of data including Planck-2013 results on CMB anisotropy, BAO distance ratios from recent galaxy surveys, galaxy power spectrum from WiggleZ, magnitude-redshift relations for distant SNe Ia from SNLS3 and Union2.1 compilations, the HST determination of the Hubble constant. It is shown that no value of $c_s$ from the range [0,1] is preferred by the used data because of very weak influence of dark energy perturbations on the large scale structure formation and CMB temperature fluctuations.
We consider a self-consistent and physical approach to interacting dark energy models described by a Lagrangian, and identify a new class of models with variable dark energy sound speed. We show that if the interaction between dark energy in the form of quintessence and cold dark matter is purely momentum exchange this generally leads to a dark energy sound speed that deviates from unity. Choosing a specific sub-case, we study its phenomenology by investigating the effects of the interaction on the cosmic microwave background and linear matter power spectrum. We also perform a global fitting of cosmological parameters using CMB data, and compare our findings to $Lambda$CDM.
We perform a detailed forecast on how well a {sc Euclid}-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. We find that the combination of these three probes vastly improves the surveys potential to measure the time evolution of dark energy. In terms of a dark energy figure-of-merit defined as $(sigma(w_{mathrm p}) sigma(w_a))^{-1}$, we find a value of 690 for {sc Euclid}-like data combined with {sc Planck}-like measurements of the cosmic microwave background (CMB) anisotropies in a 10-dimensional cosmological parameter space, assuming a $Lambda$CDM fiducial cosmology. For the more commonly used 7-parameter model, we find a figure-of-merit of 1900 for the same data combination. We consider also the surveys potential to measure dark energy perturbations in models wherein the dark energy is parameterised as a fluid with a nonstandard non-adiabatic sound speed, and find that in an emph{optimistic} scenario in which $w_0$ deviates by as much as is currently observationally allowed from $-1$, models with $hat{c}_mathrm{s}^2 = 10^{-6}$ and $hat{c}_mathrm{s}^2 = 1$ can be distinguished at more than $2sigma$ significance. We emphasise that constraints on the dark energy sound speed from cluster measurements are strongly dependent on the modelling of the cluster mass function; significantly weaker sensitivities ensue if we modify our model to include fewer features of nonlinear dark energy clustering. Finally, we find that the sum of neutrino masses can be measured with a $1 sigma$ precision of 0.015~eV, (abridged)
We forecast constraints on neutral hydrogen (HI) and cosmological parameters using near-term intensity mapping surveys with instruments such as BINGO, MeerKAT, and the SKA, and Stage III and IV optical galaxy surveys. If foregrounds and systematic effects can be controlled - a problem which becomes much easier in cross-correlation - these surveys will provide exquisite measurements of the HI density and bias, as well as measurements of the growth of structure, the angular diameter distance, and the Hubble rate, over a wide range of redshift. We also investigate the possibility of detecting the late time ISW effect using the Planck satellite and forthcoming intensity mapping surveys, finding that a large sky survey with Phase 1 of the SKA can achieve a near optimal detection.
Over the last few years, a large family of cosmological attractor models has been discovered, which can successfully match the latest inflation-related observational data. Many of these models can also describe a small cosmological constant $Lambda$, which provides the most natural description of the present stage of the cosmological acceleration. In this paper, we study $alpha$-attractor models with dynamical dark energy, including the cosmological constant $Lambda$ as a free parameter. Predominantly, the models with $Lambda > 0$ converge to the asymptotic regime with the equation of state $w=-1$. However, there are some models with $w eq -1$, which are compatible with the current observations. In the simplest models with $Lambda = 0$, one has the tensor to scalar ratio $r=frac{12alpha}{N^2}$ and the asymptotic equation of state $w=-1+frac{2}{9alpha}$ (which in general differs from its present value). For example, in the seven disk M-theory related model with $alpha = 7/3$ one finds $r sim 10^{-2}$ and the asymptotic equation of state is $w sim -0.9$. Future observations, including large-scale structure surveys as well as B-mode detectors will test these, as well as more general models presented here. We also discuss gravitational reheating in models of quintessential inflation and argue that its investigation may be interesting from the point of view of inflationary cosmology. Such models require a much greater number of $e$-folds, and therefore predict a spectral index $n_{s}$ that can exceed the value in more conventional models by about $0.006$. This suggests a way to distinguish the conventional inflationary models from the models of quintessential inflation, even if they predict $w = -1$.