Do you want to publish a course? Click here

Gap opening with ordering in PrFe4P12 studied by local tunneling spectroscopy

191   0   0.0 ( 0 )
 Added by H. Suderow
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present measurements of the local tunneling density of states in the low temperature ordered state of PrFe4P12. The temperature dependencies of the Fermi level density of states and of the integrated density of states at low bias voltages show anomalies at T=6.5 K, the onset of multipolar ordering as detected by specific heat and other macroscopic measurements. In the ordered phase, we find a local density of states with a V-shape form, indicating a partial gap opening over the Fermi surface. The size of the gap according to the tunneling spectra is about 2 meV.



rate research

Read More

291 - A. Yamasaki , S. Imada , T. Nanba 2002
Pr 4f electronic states in Pr-based filled skutterudites PrT4X12(T=Fe and Ru; X=P and Sb) have been studied by high-resolution bulk-sensitive Pr 3d-4f resonance photoemission. A very strong spectral intensity is observed just below the Fermi level in the heavy-fermion system PrFe4P12. The increase of its intensity at lower temperatures is observed. We speculate that this is the Kondo resonance of Pr, the origin of which is attributed to the strong hybridization between the Pr 4f and the conduction electrons.
We have investigated the intermediate valence narrow-gap semiconductor SmB6 at low temperatures using both conventional spear-anvil type point contacts as well as mechanically controllable break junctions. The zero-bias conductance varied between less than 0.01 mikrosiemens and up to 1 mS. The position of the spectral anomalies, which are related to the different activation energies and band gaps of SmB6, did not depend on the the contact size. Two different regimes of charge transport could be distinguished: Contacts with large zero - bias conductance are in the diffusive Maxwell regime. They had spectra with only small non-linearities. Contacts with small zero - bias conductance are in the tunnelling regime. They had larger anomalies, but still indicating a finite 45 % residual quasiparticle density of states at the Fermi level at low temperatures of T = 0.1 K. The density of states derived from the tunelling spectra can be decomposed into two energy-dependent parts with Eg = 21 meV and Ed = 4.5 meV wide gaps, respectively.
Neutron diffraction measurements on a single crystal of CeGe1.76 reveal a complex series of magnetic transitions at low temperature. At T_N = 7 K, there is a transition from a paramagnetic state at higher temperature to an incommensurate magnetic structure characterized by a magnetic propagation vector (0 0 tau) with tau approx. 1/4 and the magnetic moment along the a axis of the orthorhombic unit cell. Below T_LI = 5 K, the magnetic structure locks in to a commensurate structure with tau = 1/4 and the magnetic moment remains along the a axis. Below T* = 4 K, we find additional half-integer and integer indexed magnetic Bragg peaks consistent with a second commensurately ordered antiferromagnetic state.
159 - S. Nandi , A. Kreyssig , Y. Lee 2009
Element-specific x-ray resonant magnetic scattering investigations were performed to determine the magnetic structure of Eu in EuRh2As2. In the temperature range from 46 K down to 6 K, an incommensurate antiferromagnetic (ICM)structure with a temperature dependent propagation vector (0 0 0.9) coexists with a commensurate antiferromagnetic (CM) structure. Angular-dependent measurements of the magnetic intensity indicate that the magnetic moments lie in the tetragonal basal plane and are ferromagnetically aligned within the a-b plane for both magnetic structures. The ICM structure is a spiral-like magnetic structure with a turn angle of 162 deg between adjacent Eu planes. In the CM structure, this angle is 180 deg. These results are consistent with band-structure calculations which indicate a strong sensitivity of the magnetic configuration on the Eu valence.
The compound BaFe2Se3 (Pnma) has been synthesized in the form of single crystals with the average composition Ba0.992Fe1.998Se3. The Moessbauer spectroscopy used for investigation of the valence states of Fe in this compound at temperature ranging from 4.2 K till room temperature revealed the occurrence of mixed-valence state for iron. The spectrum is characterized by sharply defined electric quadrupole doublet above magnetic ordering at about 250 K. For the magnetically ordered state one sees four iron sites at least and each of them is described by separate axially symmetric electric field gradient tensor with the principal component making some angle with the hyperfine magnetic field. They form two groups occurring in equal abundances. It is likely that each group belongs to separate spin ladder with various tilts of the FeSe4 tetrahedral units along the ladder. Two impurity phases are found, i.e., superconducting FeSe and some other unidentified iron-bearing phase being magnetically disordered above 80 K. Powder form of BaFe2Se3 is unstable in contact with the air and decomposes slowly to this unidentified phase exhibiting almost the same quadrupole doublet as BaFe2Se3 above magnetic transition temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا