Using the combinatorial approach to Heegaard Floer homology we obtain a relatively easy formula for computation of hat Heegaard Floer homology for the three-manifold obtained by rational surgery on a knot K inside a homology sphere Y.
We show that if K is a non-trivial knot inside a homology sphere Y, then the rank of knot Floer homology associated with K is strictly bigger than the rank of Heegaard Floer homology of Y.
We obtain a formula for the Heegaard Floer homology (hat theory) of the three-manifold $Y(K_1,K_2)$ obtained by splicing the complements of the knots $K_isubset Y_i$, $i=1,2$, in terms of the knot Floer homology of $K_1$ and $K_2$. We also present a few applications. If $h_n^i$ denotes the rank of the Heegaard Floer group $widehat{mathrm{HFK}}$ for the knot obtained by $n$-surgery over $K_i$ we show that the rank of $widehat{mathrm{HF}}(Y(K_1,K_2))$ is bounded below by $$big|(h_infty^1-h_1^1)(h_infty^2-h_1^2)- (h_0^1-h_1^1)(h_0^2-h_1^2)big|.$$ We also show that if splicing the complement of a knot $Ksubset Y$ with the trefoil complements gives a homology sphere $L$-space then $K$ is trivial and $Y$ is a homology sphere $L$-space.
We construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two differe
We provide an intergral lift of the combinatorial definition of Heegaard Floer homology for nice diagrams, and show that the proof of independence using convenient diagrams adapts to this setting.