Do you want to publish a course? Click here

Evidence for the Spin Density Wave in LaFeAsO

389   0   0.0 ( 0 )
 Added by Michael McGuire
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper has been withdrawn by the authors due to errors in the X-ray diffraction data. Other measured data are not affected; however, the errors significantly change the interpretation and conclusions, and thus warrant withdrawal and later resubmission.



rate research

Read More

176 - M. Fu , D. A. Torchetti , T. Imai 2012
We report a 75-As single crystal NMR investigation of LaFeAsO, the parent phase of a pnictide high Tc superconductor. We demonstrate that spin dynamics develop a strong two-fold anisotropy within each orthorhombic domain below the tetragonal-orthorhombic structural phase transition at T[TO]~156 K. This intermediate state with a dynamical breaking of the rotational symmetry freezes progressively into a spin density wave (SDW) below T[SDW]~142 K. Our findings are consistent with the presence of a spin nematic state below T[TO] with an incipient magnetic order.
261 - T. Wu , J. J. Ying , G. Wu 2008
The temperature dependence of electron spin resonance (ESR) was studied in the oxypnictide superconductors LaFeAsO$_{1-x}$F$_x$ (x = 0.0 and 0.13). In the samples, the ESR signal indicates that the g factor and peak-to-peak linewidth strongly depend on temperature, especially at low temperatures. It indicates a strong coupling picture with existence of local moment. The dependence mentioned above gradually attenuates, and tends to saturation around room-temperature. This behavior could be ascribed to bottleneck effect due to coupling of local moment and itinerant electron. In addition, a Curie-Weiss like behavior is also observed in temperature dependent integral intensity for the two samples. Our results strongly support the existence of local moments in these materials while its origin is still unclear. The results also indicate strong magnetic frustration in this system, and magnetic fluctuation mechanism for superconductivity is suggested.
Neutron diffraction studies of Ba(Fe[1-x]Co[x])2As2 reveal that commensurate antiferromagnetic order gives way to incommensurate magnetic order for Co compositions between 0.056 < x < 0.06. The incommensurability has the form of a small transverse splitting (0, +-e, 0) from the nominal commensurate antiferromagnetic propagation vector Q[AFM] = (1, 0, 1) (in orthorhombic notation) where e = 0.02-0.03 and is composition dependent. The results are consistent with the formation of a spin-density wave driven by Fermi surface nesting of electron and hole pockets and confirm the itinerant nature of magnetism in the iron arsenide superconductors.
We present a detailed study on the magnetic order in the undoped mother compound LaOFeAs of the recently discovered Fe-based superconductor LaO$_{1-x}$F$_x$FeAs. In particular, we present local probe measurements of the magnetic properties of LaOFeAs by means of $^{57}$Fe Mossbauer spectroscopy and muon spin relaxation in zero external field along with magnetization and resistivity studies. These experiments prove a commensurate static magnetic order with a strongly reduced ordered moment of 0.25(5) $mu_B$ at the iron site below T_N = 138 K, well separated from a structural phase transition at T_N = 156 K. The temperature dependence of the sublattice magnetization is determined and compared to theory. Using a four-band spin density wave model both, the size of the order parameter and the quick saturation below T_N are reproduced.
88 - Nada Joo 2005
The study of the anion ordered (TMTSF)_2ClO_4_(1-x)ReO_4_x, solid solution in the limit of a low ReO_4- substitution level (0<=x<=17%) has revealed a new and interesting phase diagram. Superconductivity is drastically suppressed as the effect of ReO_4- non magnetic point defects increases following the digamma behaviour for usual superconductors in the presence of paramagnetic impurities. Then, no long range order can be stabilized above 0.1K in a narrow window of substitution. Finally, an insulating SDW ground state in ReO_4- -rich samples is rapidly stabilized with the decrease of the potential strength leading to the doubling of the transverse periodicity. This extensive study has shown that the superconducting order parameter must change its sign over the Fermi surface.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا