No Arabic abstract
A theoretical study of the transport properties of zigzag and armchair graphene nanoribbons with a magnetic barrier on top is presented. The magnetic barrier modifies the energy spectrum of the nanoribbons locally, which results in an energy shift of the conductance steps towards higher energies. The magnetic barrier also induces Fabry-Perot type oscillations, provided the edges of the barrier are sufficiently sharp. The lowest propagating state present in zigzag and metallic armchair nanoribbons prevent confinement of the charge carriers by the magnetic barrier. Disordered edges in nanoribbons tend to localize the lowest propagating state, which get delocalized in the magnetic barrier region. Thus, in sharp contrast to the case of two-dimensional graphene, the charge carriers in graphene nanoribbons cannot be confined by magnetic barriers. We also present a novel method based on the Greens function technique for the calculation of the magnetosubband structure, Bloch states and magnetoconductance of the graphene nanoribbons in a perpendicular magnetic field. Utilization of this method greatly facilitates the conductance calculations, because, in contrast to excising methods, the present method does not require self-consistent calculations for the surface Greens function.
An analysis of electron transport in graphene is presented in the presence of various arrangement of delta-function like magnetic barriers. The motion through one such barrier gives an unusual non specular refraction leading to asymmetric transmission. The symmetry is restored by putting two such barriers in opposite direction side by side. Periodic arrangements of such barriers can be used as Bragg reflectors whose reflectivity has been calculated using a transfer matrix formalism. Such Bragg reflectors can be used to make resonant cavities. We also analyze the associated band structure for the case of infinite periodic structures.
We report the experimental observation of conductance quantization in graphene nanoribbons, where 1D transport subbands are formed due to the lateral quantum confinement. We show that this quantization in graphene nanoribbons can be observed at temperatures as high as 80 K and channel lengths as long as 1.7 $mu$m. The observed quantization is in agreement with that predicted by theoretical calculations.
Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena that have sparked renewed interest in carbon-based spintronics. Zigzag graphene nanoribbons (ZGNRs), quasi one-dimensional semiconducting strips of graphene featuring two parallel zigzag edges along the main axis of the ribbon, are predicted to host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width. Despite recent advances in the bottom-up synthesis of atomically-precise ZGNRs, their unique electronic structure has thus far been obscured from direct observations by the innate chemical reactivity of spin-ordered edge states. Here we present a general technique for passivating the chemically highly reactive spin-polarized edge states by introducing a superlattice of substitutional nitrogen-dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunneling spectroscopy reveal a giant spin splitting of the low-lying nitrogen lone-pair flat bands by a large exchange field (~850 Tesla) induced by the spin-polarized ferromagnetically ordered edges of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices.
The wavefunction of a massless fermion consists of two chiralities, left-handed and right-handed, which are eigenstates of the chiral operator. The theory of weak interactions of elementally particle physics is not symmetric about the two chiralities, and such a symmetry breaking theory is referred to as a chiral gauge theory. The chiral gauge theory can be applied to the massless Dirac particles of graphene. In this paper we show within the framework of the chiral gauge theory for graphene that a topological soliton exists near the boundary of a graphene nanoribbon in the presence of a strain. This soliton is a zero-energy state connecting two chiralities and is an elementally excitation transporting a pseudospin. The soliton should be observable by means of a scanning tunneling microscopy experiment.
Topological insulators (TIs) are an emerging class of materials that host highly robust in-gap surface/interface states while maintaining an insulating bulk. While most notable scientific advancements in this field have been focused on TIs and related topological crystalline insulators in 2D and 3D, more recent theoretical work has predicted the existence of 1D symmetry-protected topological phases in graphene nanoribbons (GNRs). The topological phase of these laterally-confined, semiconducting strips of graphene is determined by their width, edge shape, and the terminating unit cell, and is characterized by a Z2 invariant (similar to 1D solitonic systems). Interfaces between topologically distinct GNRs characterized by different Z2 are predicted to support half-filled in-gap localized electronic states which can, in principle, be utilized as a tool for material engineering. Here we present the rational design and experimental realization of a topologically-engineered GNR superlattice that hosts a 1D array of such states, thus generating otherwise inaccessible electronic structure. This strategy also enables new end states to be engineered directly into the termini of the 1D GNR superlattice. Atomically-precise topological GNR superlattices were synthesized from molecular precursors on a Au(111) surface under ultra-high vacuum (UHV) conditions and characterized by low temperature scanning tunneling microscopy (STM) and spectroscopy (STS). Our experimental results and first-principles calculations reveal that the frontier band structure of these GNR superlattices is defined purely by the coupling between adjacent topological interface states. This novel manifestation of 1D topological phases presents an entirely new route to band engineering in 1D materials based on precise control of their electronic topology, and is a promising platform for future studies of 1D quantum spin physics.