Do you want to publish a course? Click here

Exact solution of mean geodesic distance for Vicsek fractals

273   0   0.0 ( 0 )
 Added by Zhongzhi Zhang
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Vicsek fractals are one of the most interesting classes of fractals and the study of their structural properties is important. In this paper, the exact formula for the mean geodesic distance of Vicsek fractals is found. The quantity is computed precisely through the recurrence relations derived from the self-similar structure of the fractals considered. The obtained exact solution exhibits that the mean geodesic distance approximately increases as an exponential function of the number of nodes, with the exponent equal to the reciprocal of the fractal dimension. The closed-form solution is confirmed by extensive numerical calculations.



rate research

Read More

66 - Fei Ma , Xiaomin Wang , Ping Wang 2020
Fractal phenomena may be widely observed in a great number of complex systems. In this paper, we revisit the well-known Vicsek fractal, and study some of its structural properties for purpose of understanding how the underlying topology influences its dynamic behaviors. For instance, we analytically determine the exact solution to mean first-passage time for random walks on Vicsek fractal in a more light mapping-based manner than previous other methods, including typical spectral technique. More importantly, our method can be quite efficient to precisely calculate the solutions to mean first-passage time on all generaliz
We construct and solve a classical percolation model with a phase transition that we argue acts as a proxy for the quantum many-body localisation transition. The classical model is defined on a graph in the Fock space of a disordered, interacting quantum spin chain, using a convenient choice of basis. Edges of the graph represent matrix elements of the spin Hamiltonian between pairs of basis states that are expected to hybridise strongly. At weak disorder, all nodes are connected, forming a single cluster. Many separate clusters appear above a critical disorder strength, each typically having a size that is exponentially large in the number of spins but a vanishing fraction of the Fock-space dimension. We formulate a transfer matrix approach that yields an exact value $ u=2$ for the localisation length exponent, and also use complete enumeration of clusters to study the transition numerically in finite-sized systems.
Extended Vicsek fractals (EVF) are the structures constructed by introducing linear spacers into traditional Vicsek fractals. Here we study the Laplacian spectra of the EVF. In particularly, the recurrence relations for the Laplacian spectra allow us to obtain an analytic expression for the sum of all inverse nonvanishing Laplacian eigenvalues. This quantity characterizes the large-scale properties, such as the gyration radius of the polymeric structures, or the global mean-first passage time for the random walk processes. Introduction of the linear spacers leads to local heterogeneities, which reveal themselves, for example, in the dynamics of EVF under external forces.
We analyze the random sequential dynamics of a message passing algorithm for Ising models with random interactions in the large system limit. We derive exact results for the two-time correlation functions and the speed of convergence. The {em de Almedia-Thouless} stability criterion of the static problem is found to be necessary and sufficient for the global convergence of the random sequential dynamics.
118 - P. Markov{s} , L. Schweitzer , 2004
In a recent publication, J. Phys.: Condens. Matt. 14 13777 (2002), Kuzovkov et. al. announced an analytical solution of the two-dimensional Anderson localisation problem via the calculation of a generalised Lyapunov exponent using signal theory. Surprisingly, for certain energies and small disorder strength they observed delocalised states. We study the transmission properties of the same model using well-known transfer matrix methods. Our results disagree with the findings obtained using signal theory. We point to the possible origin of this discrepancy and comment on the general strategy to use a generalised Lyapunov exponent for studying Anderson localisation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا