Do you want to publish a course? Click here

Evidence for metallicity spreads in three massive M31 globular clusters

116   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We quantify the intrinsic width of the red giant branches of three massive globular clusters in M31 in a search for metallicity spreads within these objects. We present HST/ACS observations of three massive clusters in M31, G78, G213, and G280. A thorough description of the photometry extraction and calibration is presented. After derivation of the color-magnitude diagrams, we quantify the intrinsic width of the red giant branch of each cluster. This width translates into a metallicity dispersion that indicates a complex star formation history for this type of system. For G78, sigma_[Fe/H]}=0.86 pm 0.37; for G213, 0.89 pm 0.20; and for G280, 1.03 pm 0.26. We find that the metallicity dispersion of the clusters does not scale with mean metallicity. We also find no trend with the cluster mass. We discuss some possible formation scenarios that would explain our results.



rate research

Read More

Recent discoveries have put the picture of stellar clusters being simple stellar populations into question. In particular, the color-magnitude diagrams of intermediate age (1-2 Gyr) massive clusters in the Large Magellanic Cloud (LMC) show features that could be interpreted as age spreads of 100-500 Myr. If multiple generations of stars are present in these clusters then, as a consequence, young (<1 Gyr) clusters with similar properties should have age spreads of the same order. In this paper we use archival Hubble Space Telescope (HST) data of eight young massive LMC clusters (NGC 1831, NGC 1847, NGC 1850, NGC 2004, NGC 2100, NGC 2136, NGC 2157 and NGC 2249) to test this hypothesis. We analyzed the color-magnitude diagrams of these clusters and fitted their star formation history to derive upper limits of potential age spreads. We find that none of the clusters analyzed in this work shows evidence for an extended star formation history that would be consistent with the age spreads proposed for intermediate age LMC clusters. Tests with artificial single age clusters show that the fitted age dispersion of the youngest clusters is consistent with spreads that are purely induced by photometric errors. As an additional result we determined a new age of NGC 1850 of ~100 Myr, significantly higher than the commonly used value of about 30 Myr, although consistent with early HST estimates.
298 - Luciana Federici 2012
Thanks to the outstanding capabilites of the HST, our current knowledge about the M31 globular clusters (GCs) is similar to our knowledge of the Milky Way GCs in the 1960s-1970s, which set the basis for studying the halo and galaxy formation using these objects as tracers, and established their importance in defining the cosmic distance scale. We intend to derive a new calibration of the M_V(HB)-[Fe/H] relation by exploiting the large photometric database of old GCs in M31 in the HST archive. We collected the BVI data for 48 old GCs in M31 and analysed them by applying the same methods and procedures to all objects. We obtained a set of homogeneous colour-magnitude diagrams (CMDs) that were best-fitted with the fiducial CMD ridge lines of selected Milky Way template GCs. Reddening, metallicity, Horizontal Branch (HB) luminosity and distance were determined self-consistently for each cluster. There are three main results of this study: i) the relation M_V(HB)=(0.25+/-0.02)[Fe/H]+(0.89+/-0.03), which is obtained from the above parameters and is calibrated on the distances of the template Galactic GCs; ii) the distance modulus to M31 of (m-M)_0=24.42+/-0.06 mag, obtained by normalising this relation at the reference value of [Fe/H]=-1.5 to a similar relation using V_0(HB). This is the first determination of the distance to M31 based on the characteristics of its GC system which is calibrated on Galactic GCs; iii) the distance to the Large Magellanic Cloud (LMC), which is estimated to be 18.54+/-0.07 mag as a consequence of the previous results. These values agree excellently with the most recent estimate based on HST parallaxes of Galactic Cepheid and RR Lyrae stars, as well as with recent methods.
119 - Song Wang 2013
In this paper, we present surface brightness profiles for 79 globular clusters in M31, using images observed with {it Hubble Space Telescope}, some of which are from new observations. The structural and dynamical parameters are derived from fitting the profiles to several different models for the first time. The results show that in the majority of cases, King models fit the M31 clusters as well as Wilson models, and better than S{e}rsic models. However, there are 11 clusters best fitted by S{e}rsic models with the S{e}rsic index $n>2$, meaning that they have cuspy central density profiles. These clusters may be the well-known core-collapsed candidates. There is a bimodality in the size distribution of M31 clusters at large radii, which is different from their Galactic counterparts. In general, the properties of clusters in M31 and the Milky Way fall in the same regions of parameter spaces. The tight correlations of cluster properties indicate a fundamental plane for clusters, which reflects some universal physical conditions and processes operating at the epoch of cluster formation.
240 - Sooyoung Kim 2013
Recent spectroscopy on the globular cluster (GC) system of M31 with unprecedented precision witnessed a clear bimodality in absorption-line index distributions of old GCs. Such division of extragalactic GCs, so far asserted mainly by photometric color bimodality, has been viewed as the presence of merely two distinct metallicity subgroups within individual galaxies and forms a critical backbone of various galaxy formation theories. Given that spectroscopy is a more detailed probe into stellar population than photometry, the discovery of index bimodality may point to the very existence of dual GC populations. However, here we show that the observed spectroscopic dichotomy of M31 GCs emerges due to the nonlinear nature of metallicity-to-index conversion and thus one does not necessarily have to invoke two separate GC subsystems. We take this as a close analogy to the recent view that metallicity-color nonlinearity is primarily responsible for observed GC color bimodality. We also demonstrate that the metallicity-sensitive magnesium line displays non-negligible metallicity-index nonlinearity and Balmer lines show rather strong nonlinearity. This gives rise to bimodal index distributions, which are routinely interpreted as bimodal metallicity distributions, not considering metallicity-index nonlinearity. Our findings give a new insight into the constitution of M31s GC system, which could change much of the current thought on the formation of GC systems and their host galaxies.
We present ultraviolet (UV) photometry of M31 globular clusters (GCs) found in 23 Galaxy Evolution Explorer (GALEX) images covering the entirety of M31. We detect 485 and 273 GCs (and GC candidates) in the near-ultraviolet (NUV; 2267 A) and far-ultraviolet (FUV; 1516 A), respectively. Comparing M31 data with those of Galactic GCs in the UV with the aid of population models, we find that the age ranges of old GCs in M31 and the Galactic halo are similar. Three metal-rich ([Fe/H]>-1) GCs in M31 produce significant FUV flux making their FUV-V colors unusually blue for their metallicities. These are thought to be analogs of the two peculiar Galactic GCs NGC 6388 and NGC 6441 with extended blue HB stars. Based on the models incorporating helium enriched subpopulations in addition to the majority of the population that have a normal helium abundance, we suggest that even small fraction of super-helium-rich subpopulations in GCs can reproduce the observed UV bright metal-rich GCs. Young clusters in M31 show distinct UV and optical properties from GCs in Milky Way. Population models indicate that their typical age is less than ~ 2 Gyrs. A large fraction of young GCs have the kinematics of the thin, rapidly rotating disk component. However, a subset of the old GCs also shares the thin-disk kinematics of the younger clusters. The existence of young GCs on the outskirts of M31 disk suggests the occurrence of a significant recent star formation in the thin-disk of M31. Old thin-disk GCs may set constraints on the epoch of early formation of the M31 thin-disk. We detect 12 (10) intermediate-age GC candidates in NUV (FUV). We suggest that some of spectroscopically identified intermediate-age GCs may not be truly intermediate in age, but rather older GCs that possess developed HB.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا