Do you want to publish a course? Click here

Novel Jeff = 1/2 Mott State Induced by Relativistic Spin-Orbit Coupling in Sr2IrO4

299   0   0.0 ( 0 )
 Added by Jae-Hoon Park
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigated electronic structure of 5d transition-metal oxide Sr2IrO4 using angle-resolved photoemission, optical conductivity, and x-ray absorption measurements and first-principles band calculations. The system was found to be well described by novel effective total angular momentum Jeff states, in which relativistic spin-orbit (SO) coupling is fully taken into account under a large crystal field. Despite of delocalized Ir 5d states, the Jeff-states form so narrow bands that even a small correlation energy leads to the Jeff = 1/2 Mott ground state with unique electronic and magnetic behaviors, suggesting a new class of the Jeff quantum spin driven correlated-electron phenomena.



rate research

Read More

In CaIrO3 electronic correlation, spin-orbit coupling, and tetragonal crystal field splitting are predicted to be of comparable strength. However, the nature of its ground state is still object of debate, with contradictory experimental and theoretical results. We probe the ground state of CaIrO3 and assess the effective tetragonal crystal field splitting and spin-orbit coupling at play in this system by means of resonant inelastic x-ray scattering. We conclude that insulating CaIrO3 is not a jeff = 1/2 iridate and discuss the consequences of our finding to the interpretation of previous experiments. In particular, we clarify how the Mott insulating state in iridates can be readily extended beyond the jeff = 1/2 ground state.
325 - J. Porras , J. Bertinshaw , H. Liu 2018
Spin-orbit entangled magnetic dipoles, often referred to as pseudospins, provide a new avenue to explore novel magnetism inconceivable in the weak spin-orbit coupling limit, but the nature of their low-energy interactions remains to be understood. We present a comprehensive study of the static magnetism and low-energy pseudospin dynamics in the archetypal spin-orbit Mott insulator Sr2IrO4. We find that in order to understand even basic magnetization measurements, a formerly overlooked in-plane anisotropy is fundamental. In addition to magnetometry, we use neutron diffraction, inelastic neutron scattering and resonant elastic and inelastic x-ray scattering to identify and quantify the interactions that determine the global symmetry of the system and govern the linear responses of pseudospins to external magnetic felds and their low-energy dynamics. We find that a pseudospin-only Hamiltonian is insufficient for an accurate description of the magnetism in Sr2IrO4 and that pseudospin-lattice coupling is essential. This finding should be generally applicable to other pseudospin systems with sizable orbital moments sensitive to anisotropic crystalline environments.
Zeldovich (spin) anapole correlations in Sr2IrO4 unveiled by magnetic neutron diffraction contravene the spin-orbit coupled ground state used by the jeff = 1/2 (pseudo-spin) model. Specifically, spin and space know inextricable knots which bind each to the other in the iridate. The diffraction property studied in the Letter is enforced by strict requirements from quantum mechanics and magnetic symmetry. It has not been exploited in the past, whereas neutron diffraction by anapole moments is established. Entanglement of the electronic degrees of freedom is captured by binary correlations of the anapole and position operators, and hallmarked in the diffraction amplitude by axial atomic multipoles with an even rank.
Stoichiometric Sr2IrO4 is a ferromagnetic Jeff = 1/2 Mott insulator driven by strong spin-orbit coupling. Introduction of very dilute oxygen vacancies into single-crystal Sr2IrO4-delta with delta < 0.04 leads to significant changes in lattice parameters and an insulator-to-metal transition at TMI = 105 K. The highly anisotropic electrical resistivity of the low-temperature metallic state for delta ~ 0.04 exhibits anomalous properties characterized by non-Ohmic behavior and an abrupt current-induced transition in the resistivity at T* = 52 K, which separates two regimes of resisitive switching in the nonlinear I-V characteristics. The novel behavior illustrates an exotic ground state and constitutes a new paradigm for devices structures in which electrical resistivity is manipulated via low-level current densities ~ 10 mA/cm2 (compared to higher spin-torque currents ~ 107-108 A/cm2) or magnetic inductions ~ 0.1-1.0 T.
We investigated the temperature-dependent evolution of the electronic structure of the Jeff,1/2 Mott insulator Sr2IrO4 using optical spectroscopy. The optical conductivity spectra $sigma(omega)$ of this compound has recently been found to exhibit two d-d transitions associated with the transition between the Jeff,1/2 and Jeff,3/2 bands due to the cooperation of the electron correlation and spin-orbit coupling. As the temperature increases, the two peaks show significant changes resulting in a decrease in the Mott gap. The experimental observations are compared with the results of first-principles calculation in consideration of increasing bandwidth. We discuss the effect of the temperature change on the electronic structure of Sr2IrO4 in terms of local lattice distortion, excitonic effect, electron-phonon coupling, and magnetic ordering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا