Do you want to publish a course? Click here

On the nature of ill-posedness of the forward-backward heat equation

123   0   0.0 ( 0 )
 Added by Marina Chugunova
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We study the Cauchy problem with periodic initial data for the forward-backward heat equation defined by the J-self-adjoint linear operator L depending on a small parameter. The problem has been originated from the lubrication approximation of a viscous fluid film on the inner surface of the rotating cylinder. For a certain range of the parameter we rigorously prove the conjecture, based on the numerical evidence, that the set of eigenvectors of the operator $L$ does not form a Riesz basis in $L^2 (-pi,pi)$. Our method can be applied to a wide range of the evolutional problems given by $PT-$symmetric operators.



rate research

Read More

In this paper we examine spectral properties of a family of periodic singular Sturm-Liouville problems which are highly non-self-adjoint but have purely real spectrum. The problem originated from the study of the lubrication approximation of a viscous fluid film in the inner surface of a rotating cylinder and has received a substantial amount of attention in recent years. Our main focus will be the determination of Schatten class inclusions for the resolvent operator and regularity properties of the associated evolution equation.
The aim of this article is to prove new ill-posedness results concerning the nonlinear good Boussinesq equation, for both the periodic and non-periodic initial value problems. Specifically, we prove that the associated flow map is not continuous in Sobolev spaces $H^s$, for all $s<-1/2$.
76 - Helge Dietert 2021
We analyze the stability properties of the so-called triple deck model, a classical refinement of the Prandtl equation to describe boundary layer separation. Combining the methodology introduced in [2], based on complex analysis tools, and stability estimates inspired from [3], we exhibit unstable linearizations of the triple deck equation. The growth rates of the corresponding unstable eigenmodes scale linearly with the tangential frequency. This shows that the recent result of Iyer and Vicol [11] of local well-posedness for analytic data is essentially optimal.
406 - Luc Molinet 2019
We prove the discontinuity for the weak $ L^2(T) $-topology of the flow-map associated with the periodic Benjamin-Ono equation. This ensures that this equation is ill-posed in $ H^s(T) $ as soon as $ s<0 $ and thus completes exactly the well-posedness result obtained by the author.
For the Novikov equation, on both the line and the circle, we construct a 2-peakon solution with an asymmetric antipeakon-peakon initial profile whose $H^s$-norm for $s<3/2$ is arbitrarily small. Immediately after the initial time, both the antipeakon and peakon move in the positive direction, and a collision occurs in arbitrarily small time. Moreover, at the collision time the $H^s$-norm of the solution becomes arbitrarily large when $5/4<s<3/2$, thus resulting in norm inflation and ill-posedness. However, when $s<5/4$, the solution at the collision time coincides with a second solitary antipeakon solution. This scenario thus results in nonuniqueness and ill-posedness. Finally, when $s=5/4$ ill-posedness follows either from a failure of convergence or a failure of uniqueness. Considering that the Novikov equation is well-posed for $s>3/2$, these results put together establish $3/2$ as the critical index of well-posedness for this equation. The case $s=3/2$ remains an open question.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا