No Arabic abstract
The determination of non-spherical angular momentum amplitudes in nucleons at long ranges (low Q^{2}), was accomplished through the $p(vec{e},ep)pi^0$ reaction in the Delta region at $Q^2=0.060$, 0.127, and 0.200 (GeV/c)^2 at the Mainz Microtron (MAMI) with an accuracy of 3%. The results for the dominant transition magnetic dipole amplitude and the quadrupole to dipole ratios have been obtained with an estimated model uncertainty which is approximately the same as the experimental uncertainty. Lattice and effective field theory predictions agree with our data within the relatively large estimated theoretical uncertainties. Phenomenological models are in good agreement with experiment when the resonant amplitudes are adjusted to the data. To check reaction model calculations additional data were taken for center of mass energies below resonance and for the $sigma_{TL}$ structure function. These results confirm the dominance, and general Q^2 variation, of the pionic contribution at large distances.
To determine nonspherical angular momentum amplitudes in hadrons at long ranges (low Q^2), data were taken for the p(vec{e},ep)pi^0 reaction in the Delta region at Q^2=0.060 (GeV/c)^2 utilizing the magnetic spectrometers of the A1 Collaboration at MAMI. The results for the dominant transition magnetic dipole amplitude and the quadrupole to dipole ratios at W=1232 MeV are: M_{1+}^{3/2} = (40.33 +/- 0.63_{stat+syst} +/- 0.61_{model}) (10^{-3}/m_{pi^+}),Re(E_{1+}^{3/2}/M_{1+}^{3/2}) = (-2.28 +/- 0.29_{stat+syst} +/- 0.20_{model})%, and Re(S_{1+}^{3/2}/M_{1+}^{3/2}) = (-4.81 +/- 0.27_{stat+syst} +/- 0.26_{model})%. These disagree with predictions of constituent quark models but are in reasonable agreement with lattice calculations with non-linear (chiral) pion mass extrapolations, with chiral effective field theory, and with dynamical models with pion cloud effects. These results confirm the dominance, and general Q^2 variation, of the pionic contribution at large distances.
We report new p$(vec{e},e^prime p)pi^circ$ measurements in the $Delta^{+}(1232)$ resonance at the low momentum transfer region utilizing the magnetic spectrometers of the A1 Collaboration at MAMI. The mesonic cloud dynamics are predicted to be dominant and appreciably changing in this region while the momentum transfer is sufficiently low to be able to test chiral effective calculations. The results disagree with predictions of constituent quark models and are in reasonable agreement with dynamical calculations with pion cloud effects, chiral effective field theory and lattice calculations. The reported measurements suggest that improvement is required to the theoretical calculations and provide valuable input that will allow their refinements.
We extract the Bjorken integral Gamma^{p-n}_1 in the range 0.17 < Q^2 < 1.10 GeV^2 from inclusive scattering of polarized electrons by polarized protons, deuterons and 3He, for the region in which the integral is dominated by nucleon resonances. These data bridge the domains of the hadronic and partonic descriptions of the nucleon. In combination with earlier measurements at higher Q^2, we extract the non-singlet twist-4 matrix element f_2.
The cross section of the $p(e,epi^+)n$ reaction has been measured for five kinematic settings at an invariant mass of $W = 1094$ MeV and for a four-momentum transfer of $Q^2 = 0.078$ (GeV/$c$)$^2$. The measurement has been performed at MAMI using a new short-orbit spectrometer (SOS) of the A1 collaboration, intended for detection of low-energy pions. The transverse and longitudinal cross section terms were separated using the Rosenbluth method and the transverse-longitudinal interference term has been determined from the left-right asymmetry. The experimental cross section terms are compared with the calculations of three models: DMT2001, MAID2007 and $chi$MAID. The results show that we do not yet understand the dynamics of the fundamental pion.
The gamma p --> pi0 pi0 p reaction has been measured from threshold to 1.4 GeV using the Crystal Ball and TAPS photon spectrometers together with the photon tagging facility at the Mainz Microtron. The experimental results include total and differential cross sections as well as specific angular distributions, which were used to extract partial-wave amplitudes. In particular, the energy region below the D13(1520) resonance was studied.