Do you want to publish a course? Click here

Optical Vortices during a Super-Resolution Process in a Metamaterial

161   0   0.0 ( 0 )
 Added by Giuseppe D'Aguanno
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that a super-resolution process with 100% visibility is characterized by the formation of a point of phase singularity in free space outside the lens in the form of a saddle with topological charge equal to -1. The saddle point is connected to two vortices at the end boundary of the lens, and the two vortices are in turn connected to another saddle point inside the lens. The structure saddle-vortices-saddle is topologically stable. The formation of the saddle point in free space explains also the negative flux of energy present in a certain region of space outside the lens. The circulation strength of the power flow can be controlled by varying the position of the object plane with respect to the lens.



rate research

Read More

We propose a vortex-like metamaterial device that is capable of transferring image along a spiral route without losing subwavelength information of the image. The super-resolution image can be guided and magnified at the same time with one single design. Our design may provide insights in manipulating super-resolution image in a more flexible manner. Examples are given and illustrated with numerical simulations.
The splitting of a single optical vortex into four separate ones in a singular beam is theoretically and experimentally described for the propagation of light obliquely through a uniaxial crystal. Also we found the condition under which the new-born vortices in each four individual beams propagate independently without dislocation reactions and have different locations in all beams for any crystal lengths.
The resolution of optical imaging devices is ultimately limited by the diffraction of light. To circumvent this limit, modern super-resolution microscopy techniques employ active interaction with the object by exploiting its optical nonlinearities, nonclassical properties of the illumination beam, or near-field probing. Thus, they are not applicable whenever such interaction is not possible, for example, in astronomy or non-invasive biological imaging. Far-field, linear-optical super-resolution techniques based on passive analysis of light coming from the object would cover these gaps. In this paper, we present the first proof-of-principle demonstration of such a technique. It works by accessing information about spatial correlations of the image optical field and, hence, about the object itself via measuring projections onto Hermite-Gaussian transverse spatial modes. With a basis of 21 spatial modes in both transverse dimensions, we perform two-dimensional imaging with twofold resolution enhancement beyond the diffraction limit.
Super-resolution fluorescence microscopy is an important tool in biomedical research for its ability to discern features smaller than the diffraction limit. However, due to its difficult implementation and high cost, the universal application of super-resolution microscopy is not feasible. In this paper, we propose and demonstrate a new kind of super-resolution fluorescence microscopy that can be easily implemented and requires neither additional hardware nor complex post-processing. The microscopy is based on the principle of stepwise optical saturation (SOS), where $M$ steps of raw fluorescence images are linearly combined to generate an image with a $sqrt{M}$-fold increase in resolution compared with conventional diffraction-limited images. For example, linearly combining (scaling and subtracting) two images obtained at regular powers extends resolution by a factor of $1.4$ beyond the diffraction limit. The resolution improvement in SOS microscopy is theoretically infinite but practically is limited by the signal-to-noise ratio. We perform simulations and experimentally demonstrate super-resolution microscopy with both one-photon (confocal) and multiphoton excitation fluorescence. We show that with the multiphoton modality, the SOS microscopy can provide super-resolution imaging deep in scattering samples.
We investigate numerically the dynamics of optical vortex beams carrying different topological charges, launched in a dissipative three level ladder type nonlinear atomic vapor. We impose the electromagnetically induced transparency (EIT) condition on the medium. Linear, cubic, and quintic susceptibilities, considered simultaneously with the dressing effect, are included in the analysis. Generally, the beams slowly expand during propagation and new vortices are induced, commonly appearing in oppositely charged pairs. We demonstrate that not only the form and the topological charge of the incident beam, but also its growing size in the medium greatly affect the formation and evolution of vortices. We formulate common rules for finding the number of induced vortices and the corresponding rotation directions, stemming from the initial conditions of various incident beams, as well as from the dynamical aspects of their propagation. The net topological charge of the vortex is conserved during propagation, as it should be, but the total number of charges is not necessarily same as the initial number, because of the complex nature of the system. When the EIT condition is lifted, an enhancement region of beam dynamics if reached, in which the dynamics and the expansion of the beam greatly accelerate. In the end, we discuss the liquid like behavior of light evolution in this dissipative system and propose a potential experimental scheme for observing such a behavior.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا