Do you want to publish a course? Click here

Compressible or incompressible blend of interacting monodisperse star and linear polymers near a surface

132   0   0.0 ( 0 )
 Added by Puru Gujrati
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a lattice model of a mixture of repulsive, attractive, or neutral monodisperse star (species A) and linear (species B) polymers with a third monomeric species C, which may represent free volume. The mixture is next to a hard, infinite plate whose interactions with A and C can be attractive, repulsive, or neutral. These two interactions are the only parameters necessary to specify the effect of the surface on all three components. We numerically study monomer density profiles using the method of Gujrati and Chhajer that has already been previously applied to study polydisperse and monodisperse linear-linear blends next to surfaces. The resulting density profiles always show an enrichment of linear polymers in the immediate vicinity of the surface, due to entropic repulsion of the star core. However, the integrated surface excess of star monomers is sometimes positive, indicating an overall enrichment of stars. This excess increases with the number of star arms only up to a certain critical number and decreases thereafter. The critical arm number increases with compressibility (bulk concentration of C). The method of Gujrati and Chhajer is computationally ultrafast and can be carried out on a PC, even in the incompressible case, when simulations are unfeasible. Calculations of density profiles usually take less than 20 minutes on PCs.



rate research

Read More

We investigate the formation of a two-dimensional quasicrystal in a monodisperse system, using molecular dynamics simulations of hard sphere particles interacting via a two-dimensional square-well potential. We find that more than one stable crystalline phase can form for certain values of the square-well parameters. Quenching the liquid phase at a very low temperature, we obtain an amorphous phase. By heating this amorphous phase, we obtain a quasicrystalline structure with five-fold symmetry. From estimations of the Helmholtz potentials of the stable crystalline phases and of the quasicrystal, we conclude that the observed quasicrystal phase can be the stable phase in a specific range of temperatures.
We calculate the scattering intensity of dilute and semi-dilute solutions of star polymers. The star conformation is described by a model introduced by Daoud and Cotton. In this model, a single star is regarded as a spherical region of a semi-dilute polymer solution with a local, position dependent screening length. For high enough concentrations, the outer sections of the arms overlap and build a semi-dilute solution (a sea of blobs) where the inner parts of the actual stars are embedded. The scattering function is evaluated following a method introduced by Auvray and de Gennes. In the dilute regime there are three regions in the scattering function: the Guinier region (low wave vectors, q R << 1) from where the radius of the star can be extracted; the intermediate region (1 << q R << f^(2/5)) that carries the signature of the form factor of a star with f arms: I(q) ~ q^(-10/3); and a high wavevector zone (q R >> f^(2/5)) where the local swollen structure of the polymers gives rise to the usual q^(-5/3) decay. In the semi-dilute regime the different stars interact strongly, and the scattered intensity acquires two new features: a liquid peak that develops at a reciprocal position corresponding to the star-star distances; and a new large wavevector contribution of the form q^(-5/3) originating from the sea of blobs.
We investigate the existence and location of the surface phase known as the Surface-Attached Globule (SAG) conjectured previously to exist in lattice models of three-dimensional polymers when they are attached to a wall that has a short range potential. The bulk phase, where the attractive intra-polymer interactions are strong enough to cause a collapse of the polymer into a liquid-like globule and the wall either has weak attractive or repulsive interactions, is usually denoted Desorbed-Collapsed or DC. Recently this DC phase was conjectured to harbour two surface phases separated by a boundary where the bulk free energy is analytic while the surface free energy is singular. The surface phase for more attractive values of the wall interaction is the SAG phase. We discuss more fully the properties of this proposed surface phase and provide Monte Carlo evidence for self-avoiding walks up to length 256 that this surface phase most likely does exist. Importantly, we discuss alternatives for the surface phase boundary. In particular, we conclude that this boundary may lie along the zero wall interaction line and the bulk phase boundaries rather than any new phase boundary curve.
We present the results of analytic calculations and numerical simulations of the behaviour of a new class of chain molecules which we call thick polymers. The concept of the thickness of such a polymer, viewed as a tube, is encapsulated by a special three body interaction and impacts on the behaviour both locally and non-locally. When thick polymers undergo compaction due to an attractive self-interaction, we find a new type of phase transition between a compact phase and a swollen phase at zero temperature on increasing the thickness. In the vicinity of this transition, short tubes form space filling helices and sheets as observed in protein native state structures. Upon increasing the chain length, or the number of chains, we numerically find a crossover from secondary structure motifs to a quite distinct class of structures akin to the semi-crystalline phase of polymers or amyloid fibers in polypeptides.
176 - Gerard T. Barkema 2012
We present a model for semiflexible polymers in Hamiltonian formulation which interpolates between a Rouse chain and worm-like chain. Both models are realized as limits for the parameters. The model parameters can also be chosen to match the experimental force-extension curve for double-stranded DNA. Near the ground state of the Hamiltonian, the eigenvalues for the longitudinal (stretching) and the transversal (bending) modes of a chain with N springs, indexed by p, scale as lambda_lp ~ (p/N)^2 and lambda_tp ~ p^2(p-1)^2/N^4 respectively for small p. We also show that the associated decay times tau_p ~ (N/p)^4 will not be observed if they exceed the orientational time scale tau_r ~ N^3 for an equally-long rigid rod, as the driven decay is then washed out by diffusive motion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا