No Arabic abstract
Recently de Marchi, Paresce & Pulone (2007) studied a sample of twenty globular clusters and found that all clusters with high concentrations have steep stellar mass-functions while clusters with low concentration have comparatively shallow mass-functions. No globular clusters were found with a flat mass-function and high concentration. This seems curious since more concentrated star clusters are believed to be dynamically more evolved and should have lost more low-mass stars via evaporation, which would result in a shallower mass-function in the low-mass part. We show that this effect can be explained by residual-gas expulsion from initially mass-segregated star clusters, and is enhanced further through unresolved binaries. If gas expulsion is the correct mechanism to produce the observed trend, then observation of these parameters would allow to constrain cluster starting conditions such as star formation efficiency and the time-scale of gas expulsion.
We investigate the Initial Mass Function and mass segregation in super star cluster M82-F with high resolution Keck/NIRSPEC echelle spectroscopy. Cross-correlation with template supergiant spectra provides the velocity dispersion of the cluster, enabling measurement of the kinematic (virial) mass of the cluster when combined with sizes from NICMOS and ACS images. We find a mass of 6.6 +/- 0.9 x 10^5 M_sun based on near-IR light and 7.0 +/- 1.2 x 10^5 M_sun based on optical light. Using PSF-fitting photometry, we derive the clusters light-to-mass ratio in both near-IR and optical light, and compare to population synthesis models. The ratios are inconsistent with a normal stellar initial mass function for the adopted age of 40 to 60 Myr, suggesting a deficiency of low-mass stars within the volume sampled. King model light profile fits to new HST/ACS images of M82-F, in combination with fits to archival near-IR images, indicate mass segregation in the cluster. As a result, the virial mass represents a lower limit on the mass of the cluster.
We have undertaken the largest systematic study of the high-mass stellar initial mass function (IMF) to date using the optical color-magnitude diagrams (CMDs) of 85 resolved, young (4 Myr < t < 25 Myr), intermediate mass star clusters (10^3-10^4 Msun), observed as part of the Panchromatic Hubble Andromeda Treasury (PHAT) program. We fit each clusters CMD to measure its mass function (MF) slope for stars >2 Msun. For the ensemble of clusters, the distribution of stellar MF slopes is best described by $Gamma=+1.45^{+0.03}_{-0.06}$ with a very small intrinsic scatter. The data also imply no significant dependencies of the MF slope on cluster age, mass, and size, providing direct observational evidence that the measured MF represents the IMF. This analysis implies that the high-mass IMF slope in M31 clusters is universal with a slope ($Gamma=+1.45^{+0.03}_{-0.06}$) that is steeper than the canonical Kroupa (+1.30) and Salpeter (+1.35) values. Using our inference model on select Milky Way (MW) and LMC high-mass IMF studies from the literature, we find $Gamma_{rm MW} sim+1.15pm0.1$ and $Gamma_{rm LMC} sim+1.3pm0.1$, both with intrinsic scatter of ~0.3-0.4 dex. Thus, while the high-mass IMF in the Local Group may be universal, systematics in literature IMF studies preclude any definitive conclusions; homogenous investigations of the high-mass IMF in the local universe are needed to overcome this limitation. Consequently, the present study represents the most robust measurement of the high-mass IMF slope to date. We have grafted the M31 high-mass IMF slope onto widely used sub-solar mass Kroupa and Chabrier IMFs and show that commonly used UV- and Halpha-based star formation rates should be increased by a factor of ~1.3-1.5 and the number of stars with masses >8 Msun are ~25% fewer than expected for a Salpeter/Kroupa IMF. [abridged]
We present a new technique to quantify cluster-to-cluster variations in the observed present-day stellar mass functions of a large sample of star clusters. Our method quantifies these differences as a function of both the stellar mass and the total cluster mass, and offers the advantage that it is insensitive to the precise functional form of the mass function. We applied our technique to data taken from the ACS Survey for Globular Clusters, from which we obtained completeness-corrected stellar mass functions in the mass range 0.25-0.75 M$_{odot}$ for a sample of 27 clusters. The results of our observational analysis were then compared to Monte Carlo simulations for globular cluster evolution spanning a range of initial mass functions, total numbers of stars, concentrations, and virial radii. We show that the present-day mass functions of the clusters in our sample can be reproduced by assuming an universal initial mass function for all clusters, and that the cluster-to-cluster differences are consistent with what is expected from two-body relaxation. A more complete exploration of the initial cluster conditions will be needed in future studies to better constrain the precise functional form of the initial mass function. This study is a first step toward using our technique to constrain the dynamical histories of a large sample of old Galactic star clusters and, by extension, star formation in the early Universe.
Westerlund 1 is the most important starburst cluster in the Galaxy due to its massive star content. We have performed BVIc and JKs photometry to investigate the initial mass function (IMF). By comparing the observed color with the spectral type - intrinsic color relation, we obtain the mean interstellar reddening of <E(B-V)>=4.19+/-0.23 and <E(J-Ks)>=1.70+/-0.21. Due to the heavy extinction toward the cluster, the zero-age main sequence fitting method based on optical photometry proved to be inappropriate for the distance determination, while the near-infrared photometry gave a reliable distance to the cluster -- 3.8 kpc from the empirical relation. Using the recent theoretical stellar evolution models with rotation, the age of the cluster is estimated to be 5.0+/-1.0 Myr. We derived the IMF in the massive part and obtained a fairly shallow slope of {Gamma} = -0.8 +/- 0.1. The integration of the IMF gave a total mass for the cluster in excess of 5.0 x 10^4 solar mass. The IMF shows a clear radial variation indicating the presence of mass segregation. We also discuss the possible star formation history of Westerlund 1 from the presence of red supergiants and relatively low-luminosity yellow hypergiants.
In this paper we investigate whether the stellar initial mass function of early-type galaxies depends on their host environment. To this purpose, we have selected a sample of early-type galaxies from the SPIDER catalogue, characterized their environment through the group catalogue of Wang et al. and used their optical SDSS spectra to constrain the IMF slope, through the analysis of IMF-sensitive spectral indices. To reach a high enough signal-to-noise ratio, we have stacked spectra in velocity dispersion ($sigma_0$) bins, on top of separating the sample by galaxy hierarchy and host halo mass, as proxies for galaxy environment. In order to constrain the IMF, we have compared observed line strengths to predictions of MIUSCAT/EMILES synthetic stellar population models, with varying age, metallicity, and bimodal (low-mass tapered) IMF slope ($rm Gamma_b$). Consistent with previous studies, we find that $rm Gamma_b$ increases with $sigma_0$, becoming bottom-heavy (i.e. an excess of low-mass stars with respect to the Milky-Way-like IMF) at high $sigma_0$. We find that this result is robust against the set of isochrones used in the stellar population models, as well as the way the effect of elemental abundance ratios is taken into account. We thus conclude that it is possible to use currently state-of-the-art stellar population models and intermediate resolution spectra to consistently probe IMF variations. For the first time, we show that there is no dependence of $Gamma_b$ on environment or galaxy hierarchy, as measured within the $3$ SDSS fibre, thus leaving the IMF as an intrinsic galaxy property, possibly set already at high redshift.