Do you want to publish a course? Click here

On finiteness of odd superperfect numbers

273   0   0.0 ( 0 )
 Added by Tomohiro Yamada
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Some new results concerning the equation $sigma(N)=aM, sigma(M)=bN$ are proved. As a corollary, there are only finitely many odd superperfect numbers with a fixed number of distinct prime factors.



rate research

Read More

We prove that the cohomology groups of an etale Q_p-local system on a smooth proper rigid analytic space are finite-dimensional Q_p-vector spaces, provided that the base field is either a finite extension of Q_p or an algebraically closed nonarchimedean field containing Q_p. This result manifests as a special case of a more general finiteness result for the higher direct images of a relative (phi, Gamma)-module along a smooth proper morphism of rigid analytic spaces over a mixed-characterstic nonarchimedean field.
83 - Plawan Das , C. S. Rajan 2020
We study the relationship between potential equivalence and character theory; we observe that potential equivalence of a representation $rho$ is determined by an equality of an $m$-power character $gmapsto Tr(rho(g^m))$ for some natural number $m$. Using this, we extend Faltings finiteness criteria to determine the equivalence of two $ell$-adic, semisimple representations of the absolute Galois group of a number field, to the context of potential equivalence. We also discuss finiteness results for twist unramified representations.
96 - Yongyi Chen 2021
Given an integer $k$, define $C_k$ as the set of integers $n > max(k,0)$ such that $a^{n-k+1} equiv a pmod{n}$ holds for all integers $a$. We establish various multiplicative properties of the elements in $C_k$ and give a sufficient condition for the infinitude of $C_k$. Moreover, we prove that there are finitely many elements in $C_k$ with one and two prime factors if and only if $k>0$ and $k$ is prime. In addition, if all but two prime factors of $n in C_k$ are fixed, then there are finitely many elements in $C_k$, excluding certain infinite families of $n$. We also give conjectures about the growth rate of $C_k$ with numerical evidence. We explore a similar question when both $a$ and $k$ are fixed and prove that for fixed integers $a geq 2$ and $k$, there are infinitely many integers $n$ such that $a^{n-k} equiv 1 pmod{n}$ if and only if $(k,a) eq (0,2)$ by building off the work of Kiss and Phong. Finally, we discuss the multiplicative properties of positive integers $n$ such that Carmichael function $lambda(n)$ divides $n-k$.
We prove two finiteness results for reductions of Hecke orbits of abelian varieties over local fields: one in the case of supersingular reduction and one in the case of reductive monodromy. As an application, we show that only finitely many abelian varieties on a fixed isogeny leaf admit CM lifts, which in particular implies that in each fixed dimension $g$ only finitely many supersingular abelian varieties admit CM lifts. Combining this with the Kuga-Satake construction, we also show that only finitely many supersingular $K3$-surfaces admit CM lifts. Our tools include $p$-adic Hodge theory and group theoretic techniques.
It is conjectured that for a perfect number $m,$ $rm{rad}(m)ll m^{frac{1}{2}}.$ We prove bounds on the radical of multiperfect number $m$ depending on its abundancy index. Assuming the ABC conjecture, we apply this result to study gaps between multiperfect numbers, multiperfect numbers represented by polynomials. Finally, we prove that there are only finitely many multiperfect multirepdigit numbers in any base $g$ where the number of digits in the repdigit is a power of $2.$ This generalizes previous works of several authors including O. Klurman, F. Luca, P. Polack, C. Pomerance and others.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا