Do you want to publish a course? Click here

Multiple bosonic mode coupling in the charge dynamics of the electron-doped superconductor (Pr$_{2-x}$Ce$_x$)CuO$_4$

158   0   0.0 ( 0 )
 Added by Ewald Schachinger
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze optical spectroscopy data of the electron-doped superconductor (Pr$_{2-x}$Ce$_x$)CuO$_4$ (PCCO) to investigate the coupling of the charge carriers to bosonic modes. The method of analysis is the inversion of the optical scattering rate $tau^{-1}_{rm op}(omega,T)$ at different temperatures $T$ by means of maximum entropy technique combined with Eliashberg theory. We find that in the superconducting state the charge carriers couple to two dominant modes one at $sim 10 $meV and a second one at $sim 45 $meV. The low energy mode shows a strong temperature dependence and disappears at or slightly above the critical temperature $T_c$. The high energy mode exists above $T_c$ and moves towards higher energies with increasing temperatures. It also becomes less prominent at temperatures $> 100 $K above which it evolves into a typical spin-fluctuation background. In contrast to the hole-doped High-$T_c$ superconductors PCCO proves to be a superconductor close to the dirty limit.



rate research

Read More

We use neutron scattering to study the influence of a magnetic field on spin structures of Nd$_2$CuO$_4$. On cooling from room temperature, Nd$_2$CuO$_4$ goes through a series of antiferromagnetic (AF) phase transitions with different noncollinear spin structures. While a c-axis aligned magnetic field does not alter the basic zero-field noncollinear spin structures, a field parallel to the CuO$_2$ plane can transform the noncollinear structure to a collinear one (spin-flop transition), induce magnetic disorder along the c-axis, and cause hysteresis in the AF phase transitions. By comparing these results directly to the magnetoresistance (MR) measurements of Nd$_{1.975}$Ce$_{0.025}$CuO$_4$, which has essentially the same AF structures as Nd$_2$CuO$_4$, we find that a magnetic-field-induced spin-flop transition, AF phase hysteresis, and spin c-axis disorder all affect the transport properties of the material. Our results thus provide direct evidence for the existence of a strong spin-charge coupling in electron-doped copper oxides.
Results of low-temperature upper critical field measurements for Nd$_{2-x}$Ce$_x$CuO$_{4+delta}$ single crystals with various $x$ and nonstoichiometric disorder ($delta$) are presented. The coherence length of pair correlation $xi$ and the product $k_F$$xi$, where $k_F$ is the Fermi wave vector, are estimated. It is shown that for investigated single crystals parameter $k_F$$xi$ $cong$ 100 and thus phenomenologically NdCeCuO - system is in a range of Cooper-pair-based (BCS) superconductivity.
We report muon-spin rotation/relaxation (muSR) measurements on single crystals of the electron-doped high-T_c superconductor Pr$_{2-x}$Ce$_x$CuO$_4$. In zero external magnetic field, superconductivity is found to coexist with Cu spins that are static on the muSR time scale. In an applied field, we observe a Knight shift that is primarily due to the magnetic moment induced on the Pr ions. Below the superconducting transition temperature T_c, an additional source of static magnetic order appears throughout the sample. This finding is consistent with antiferromagnetic ordering of the Cu spins in the presence of vortices. We also find that the temperature dependence of the in-plane magnetic penetration depth in the vortex state resembles that of the hole-doped cuprates at temperatures above ~ 0.2 T_c.
Charge order has now been observed in several cuprate high-temperature superconductors. We report a resonant inelastic x-ray scattering experiment on the electron-doped cuprate Nd$_{2-x}$Ce$_{x}$CuO$_4$ that demonstrates the existence of dynamic correlations at the charge order wave vector. Upon cooling we observe a softening in the electronic response, which has been predicted to occur for a d-wave charge order in electron-doped cuprates. At low temperatures, the energy range of these excitations coincides with that of the dispersive magnetic modes known as paramagnons. Furthermore, measurements where the polarization of the scattered photon is resolved indicate that the dynamic response at the charge order wave vector primarily involves spin-flip excitations. Overall, our findings indicate a coupling between dynamic magnetic and charge-order correlations in the cuprates.
We used femtosecond optical pump-probe spectroscopy to study the photoinduced change in reflectivity of thin films of the electron-doped cuprate La$_{2-x}$Ce$_x$CuO$_4$ (LCCO) with dopings of x$=$0.08 (underdoped) and x$=$0.11 (optimally doped). Above T$_c$, we observe fluence-dependent relaxation rates which onset at a similar temperature that transport measurements first see signatures of antiferromagnetic correlations. Upon suppressing superconductivity with a magnetic field, it is found that the fluence and temperature dependence of relaxation rates is consistent with bimolecular recombination of electrons and holes across a gap (2$Delta_{AF}$) originating from antiferromagnetic correlations which comprise the pseudogap in electron-doped cuprates. This can be used to learn about coupling between electrons and high-energy ($omega>2Delta_{AF}$) excitations in these compounds and set limits on the timescales on which antiferromagnetic correlations are static.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا